Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

THE DEGREE OF INFLUENCE OF OCEAN SURFACE CURRENTS ON ADJACENT LAND CLIMATE

Anichkina N.V. 1 Rostom G.R. 1
1 Lipetsk State Pedagogical P. Semenov-Tyan-Shansky University
The paper attempts to clarify the extent of the effect of ocean surface currents on the climate of the adjacent land. The leading role of the ocean is determined in the Earth’s climate system. It is shown that the transfer of heat and moisture to the land is carried out by the entire surface of the ocean by air masses. The main role of ocean currents is mixing warm and cold water masses. It is noticed, that an essential role in the heat exchange between the ocean and the atmosphere play long termed Rossby waves, that represent mainly vertical water streams. It was revealed that on the adjacent land ocean currents act locally – only under the condition that the land area is very small and comparable to the size of the ocean current. In this case, depending on the ratio between the characteristics of the flow and the adjacent land, there can be slight temperature changes (both upward and downward). Direct influence of currents on rainfall amount on the adjacent land is not determined.
surface currents of the ocean
the interaction of ocean and atmosphere
climate system
Gulf Stream
Rossby waves

В последние годы большой интерес вызывают вопросы, связанные с изменениями характеристик климатической системы Земли и их причинами. Надо отметить, что систематические наблюдения за изменениями климата начались сравнительно недавно. Ещё в 17 веке метеорология являлась частью науки физики. Именно учёным-физикам мы обязаны изобретением метеорологических приборов. Так, Галилеем с учениками были изобретены термометр, дождемер, барометр. Только со второй половины 17 века в Тоскане начинают проводиться инструментальные наблюдения. Тогда же разрабатываются и первые метеорологические теории. Но потребовалось почти два столетия на пути к систематическим метеорологическим наблюдениям. Они начинаются во второй половине 19 века в Европе, после изобретения телеграфа. В 1960-е гг. была проведена большая работа по созданию глобальной сети системы наблюдений за погодой. В последнее время все чаще в средствах массовой информации стали появляться сообщения об участившихся случаях необычно большого количества выпавших осадков в Европе, внезапного выпадения снега в тропических районах США и Северной Африки, цветении растений в пустыне Атакама. Долгое время не прекращаются споры о степени влияния Гольфстрима на климат Европы, о неблагоприятных последствиях при возможном прекращении функционирования этого теплого течения. К сожалению, материал подается таким образом, что создается впечатление, что мир перевернулся с ног на голову и в скором времени нужно ожидать какие-нибудь катастрофические климатические явления. Непростая фактическая картина подогревается разнообразными футуристическими предсказаниями о существенных изменениях привычного порядка вещей вроде значительного повышения уровня океана, значительного изменения угла наклона земной оси, сильного повышения температуры приземного слоя атмосферы.

В этой связи большое значение имеет выяснение причин климатических явлений, которые должны помочь адекватно воспринимать действительность и принимать разумные шаги по адаптации к предстоящим изменениям. В данной статье предпринята попытка определить степень влияния океанских поверхностных течений на климат прилегающей суши. Данный аспект выбран по причине того, что в науке о Земле влияние океанских течений на климат прилегающей суши немного переоценено. Из-за этого приуменьшается роль океана в формировании климата суши, искажается тем самым понимание поведения климатической системы Земли и отдаляется момент принятия адекватных мер по адаптации.

Существует мнение, что теплые морские течения приносят осадки и тепло на прилегающую сушу [3]. Этому учат и в школах, и в вузе. Всесторонний анализ существующей картины говорит о неоднозначном проявлении этого постулата.

Океанскую воду можно рассматривать как накопитель солнечного тепла на Земле. Океанская вода поглощает 2/3 солнечной радиации. Теплоемкость океана настолько велика, что океанская вода (кроме поверхностного слоя) практически не меняет температуру по сезонам (в отличие от поверхности суши). Поэтому зимой на океанском побережье тепло, а летом – прохладно. Если же площадь суши (по сравнению с площадью океана) невелика (как в Европе), то отепляющее влияние океана может распространяться на значительные пространства. Выявлена тесная связь между потерей океаном тепла и потеплением атмосферного воздуха, и наоборот [1], что является логичным. Вместе с тем последние данные исследований говорят о более сложной картине тепловой динамики океана и атмосферы. Ведущую роль в потере океаном тепла ученые отдают такому пока еще малоизученному явлению, как североатлантическая осцилляция [6]. Это периодические многодекадные изменения температуры океана, наблюдаемые в Северной Атлантике. С конца 1990-х гг. наблюдалась волна потепления океанской воды. В результате во многих районах северного полушария наблюдалось необычно большое количество ураганов. В настоящее время происходит переход к периоду понижения температуры поверхностных океанских вод. Это, скорее всего, уменьшит количество ураганов в северном полушарии.

Сезонное постоянство температуры всей массы океанской воды, особенно в районе тропиков, привело к формированию над поверхностью океана постоянных центров высокого давления, которые получили название центров действия атмосферы. Благодаря им существует общая циркуляция атмосферы, которая представляет собой запускающий механизм общей циркуляции океанских вод. Благодаря действию постоянных ветров возникают поверхностные течения Мирового океана. С их помощью осуществляется перемешивание океанской воды, а именно: поступление теплых вод в холодные области (с помощью «теплых» течений) и прохладных вод – в теплые (с помощью «холодных» течений). Необходимо помнить, что «теплыми» или «холодными» эти течения являются только по отношению к окружающим водам. Например, температура теплого Норвежского течения – + 3 °С, холодного Перуанского – + 22 °С. Системы океанских течений совпадают с системами постоянных ветров и представляют собой замкнутые кольца. Что касается течения Гольфстрим, то оно действительно приносит тепло в воды Северной Атлантики (но никак не в Европу) [4, 5]. В свою очередь, теплые воды Северной Атлантики передают свое тепло атмосферному воздуху, который вместе с западным переносом может распространиться в Европе.

Последние исследования по вопросу теплообмена между океанскими водами Северной Атлантики и атмосферой показали, что ведущую роль в изменении температуры океанских вод играют не столько течения, сколько волны Россби [2].

Тепловое взаимодействие океана и атмосферы происходит при разности температуры поверхностного слоя океанской воды и нижнего слоя воздуха атмосферы. Если температура воды поверхностного слоя океана больше температуры нижнего слоя атмосферы, то тепло от океана передаётся атмосфере. И наоборот, тепло передаётся океану, если воздух теплее океана. Если же температуры океана и атмосферы равны, то передача тепла между океаном и атмосферой не происходит. Чтобы существовал поток тепла между океаном и атмосферой, должны существовать механизмы, изменяющие температуру воздуха или воды в контактной зоне океан – атмосфера. Со стороны атмосферы это может быть ветер, со стороны океана – это механизмы движения воды в вертикальном направлении, обеспечивающие поступление воды с температурой отличной от температуры контактной зоны океана и атмосферы. Такими вертикальными движениями воды в океане являются долгопериодные волны Россби. Эти волны отличаются от известных нам ветровых волн по многим параметрам. Во-первых, они имеют большую длину (до нескольких сотен километров) и меньшую высоту. Об их присутствии в море исследователи обычно судят по изменению вектора течений частиц воды. Во-вторых, это долгопериодные инерционные волны, время жизни которых достигает десяти и более лет. Такие волны относят к градиентно-вихревым, которые обязаны своим существованием гироскопическим силам и определяются законом сохранения потенциального вихря.

Другими словами, ветер генерирует поток, который, в свою очередь, генерирует инерционные волны. Применительно к данному движению воды термин «волна» является условным. Частицы воды совершают преимущественно вращательные движения, причем как в горизонтальной, так и в вертикальной плоскости. В результате на поверхность поднимаются или теплые, или холодные водные массы. Одним из следствий этого явления является перемещение и искривление (меандрирование) систем течений [2].

Результаты исследования и их обсуждение

Течения как частный случай проявления свойств океанских вод при стечении определенных факторов могут оказывать существенное влияние на метеорологические показатели прибрежной суши. Например, теплое Восточно-Австралийское течение способствует еще большему насыщению влагой океанского воздуха, из которого при подъеме по Большому Водораздельному хребту на востоке Австралии выпадают осадки. Теплое Норвежское течение растапливает арктические льды в западной части Баренцева моря. Как следствие, зимой воды Мурманского порта не замерзают (тогда как в самом Мурманске зимой температура опускается ниже – 20 °С). Оно же обогревает узкую полосу западного побережья Норвегии (рис. 1, а). Благодаря теплому течению Куросио у восточных берегов Японских островов зимние температуры более высокие, чем в западной части (рис. 1, б).

anic1a.tif anic1b.tif

а) б)

Рис. 1. Распределение среднегодовых температур воздуха в Норвегии (а) и Японии (б); в град. Цельсия: красной стрелкой обозначены теплые течения

Холодные течения также могут воздействовать на метеорологические характеристики прибрежной суши. Так, холодные течения в тропиках у западных берегов Южной Америки, Африки и Австралии (соответственно – Перуанское, Бенгельское, Западно-Австралийское) отклоняются к западу, а на их место поднимаются еще более холодные глубинные воды. В результате, нижние слои прибрежного воздуха охлаждаются, возникает температурная инверсия (когда нижние слои холоднее верхних) и исчезают условия для образования осадков. Поэтому здесь располагаются одни из самых безжизненных пустынь – береговые (Атакама, Намиб). Другим примером является влияние холодного Камчатского течения у восточных берегов Камчатки. Оно дополнительно охлаждает прибрежные области (особенно летом) вытянутого небольшого по площади полуострова, и, как следствие, южная граница тундры распространяется гораздо южнее среднеширотной границы.

Вместе с этим необходимо отметить, что говорить о прямом влиянии теплых океанских течений на увеличение количества осадков прибрежной суши с достаточной степенью уверенности нельзя. Зная механизм образования осадков, приоритет в их появлении необходимо отдать наличию горных территорий на побережьях, по которым воздух поднимается, охлаждается, влага в воздухе конденсируется и формируются осадки. Наличие теплых течений на побережье нужно считать совпадением или дополнительным стимулирующим фактором, но никак не главной причиной образования осадков. Там, где больших гор нет (например, на востоке Южной Америки и аравийском побережье Юго-Западной Азии), наличие теплых течений не ведет к повышению количества осадков (рис. 2). И это несмотря на то, что в этих районах ветер дует со стороны океана на сушу, т.е. существуют все условия для полного проявления влияния теплых течений на побережье.

anic2a.tif anic2b.tif

а) б)

Рис. 2. Распределение годового количества осадков на востоке Южной Америки (а) и аравийском побережье Юго-Западной Азии (б): красной стрелкой обозначены теплые течения

Что касается непосредственно образования осадков, то общеизвестно, что они формируются при поднятии воздуха вверх и его последующем охлаждении. При этом влага конденсируется и образуются осадки. Ни теплые, ни холодные течения существенного влияния на поднятие воздуха не оказывают. Можно выделить три района Земли, в которых существуют идеальные условия для образования осадков:

1) на экваторе, где воздушные массы всегда восходящие благодаря сложившейся системе циркуляции атмосферы;

2) на наветренных склонах гор, где воздух поднимается вверх по склону;

3) в районах умеренного пояса, испытывающих влияние циклонов, где потоки воздуха всегда восходящие. На мировой карте осадков можно убедиться, что именно в этих районах земли количество осадков наибольшее.

Важным условием образования осадков является благоприятная стратификация атмосферы. Так, на ряде островов, расположенных в центре океанов, особенно в районах, прилегающих к субтропическим антициклонам, в течение круглого года дожди выпадают крайне редко, несмотря на то, что и влагосодержание воздуха здесь достаточно большое, и перенос влаги здесь существует в сторону этих островов. Чаще всего такая ситуация наблюдается в районе пассатов, где восходящие токи слабы и не достигают уровня конденсации. Образование пассатной инверсии объясняется нагреванием воздуха в процессе его опускания в зоне субтропических антициклонов, с последующим охлаждением нижних слоев от более холодной водной поверхности.

Выводы

Таким образом, влияние поверхностных океанских течений на климат прилегающей суши локально и проявляется только при стечении определенных факторов. Благоприятное стечение факторов проявляется, по крайней мере, в двух типах районов Земли. Во-первых, на небольших по площади территориях, сопоставимых с размерами течений. Во-вторых, на территориях с экстремальными (высокими или низкими) температурами. В этих случаях, если вода более теплая, узкая прибрежная полоса суши будет обогреваться (Североатлантическое течение в Британии). Если температура воды течения более низкая – наоборот, узкая прибрежная полоса суши будет охлаждаться (Перуанское течение у западного побережья Южной Америки). В общем случае наибольшее влияние на поступление тепла на сушу оказывает вся масса океанской воды посредством переноса тепла циркуляционными атмосферными потоками.

Таким же образом поступает и влага на сушу – с поверхности всего океана через атмосферные потоки. При этом обязательно должно выполняться одно дополнительное условие – для того, чтобы воздух отдал полученную над океаном влагу, он должен подняться в верхние слои атмосферы, чтобы охладиться. Только тогда влага конденсируется, и выпадают осадки. В этом процессе океанские течения играют очень незначительную роль. Больше всего океанские течения (холодные в тропических широтах) способствуют дефициту осадков. Это проявляется при прохождении холодных течений в тропиках у западных берегов Южной Америки, Африки и Австралии.

Что касается областей, лежащих в глубине континента, например Центрально-Чернозёмных областей Русской равнины, то характер атмосферной циркуляции в безморозный период года обуславливает преимущественно режим антициклональной, солнечной погоды, формирующийся в массах континентально умеренного воздуха. Морские воздушные массы приходят на данную территорию преимущественно в изменённом виде, потеряв на пути своего следования значительную часть своих основных свойств.

Говоря о влиянии Гольфстрима на климат Европы, надо иметь в виду два важных момента. Во-первых, под Гольфстримом в данном случае необходимо понимать всю систему теплых североатлантических течений, а не собственно течение Гольфстрим (оно североамериканское и к Европе никакого отношения не имеет). Во-вторых, помнить о поступлении тепла и влаги с поверхности всего Атлантического океана посредством их переноса воздушными массами. Одного теплого океанского течения для обогрева всей Европы явно мало.

В конце необходимо напомнить, что, являясь ветровыми, поверхностные течения Мирового океана вряд ли исчезнут, пока существует установившаяся на Земле система циркуляции атмосферы.