Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,746

1. Нелинейные волновые процессы моделируются при помощи нелинейных дифференциальных уравнениях в частных производных. Если ограничится нелинейными аналогами волнового уравнения, то упомянутая модель может быть представлена в виде

utt - с2uxx=h(u,ut,ux,t,x),     (1)

h - нелинейная функция, структура которой определяется геометрическими и (или) физическими особенностями задачи. Раскладывая функцию h в ряд, в разных приближениях можно получать модели нелинейных волновых процессов. Нелинейные волновые эффекты весьма многочисленны и многообразны. В частности показывается, что при рассмотрении простейших нелинейных волновых моделей проявляются такие весьма характерные и важные явления как «деформирование» и «опрокидывание» профилей волн.

2. Рассмотрим примеры анализа нелинейных волн в так называемых виброударных системах с распределенными ударными элементами. Обозначим: u(x,t) - искомый прогиб. Пусть расстояние между струной и ограничителем равно Δ; 0<Δ<1. Имеем для определенности:

u(x,t)≤Δ<1, x [-½,½], t≥0.      (2)

При реализации в первом соотношении строгого неравенства задача линейна и, ограничиваясь консервативным случаем имеем u≡utt-uxx=0. Пусть: u(±½,t)=0, u(x,0)= u0(x) ≤0, ut(x,0)= 0.Гладкость функции u0(x) такова, что (хотя бы в обобщенном смысле) обеспечивается существование и единственность решение задачи Коши в соответствующей линейной системе. При реализации контакта ограничитель действует на струну «от себя» поэтому при u>0:

u≤0        (3)

Условие аналогичное (3) эквивалентно дозвуковому распространению взаимодействий.Потребуем: suppu⊂ {(x,t); u(x,t)=Δ, где символ «supp» обозначает носитель обобщенной функции. Считая, что при взаимодействии энергия не теряется, постулируем здесь выполнение, имеющего место в соответствующей линейной системе соотношения, выражающего закон сохранения энергии, т.е. в смысле обобщенных функций ∂ ⁄∂t(|ut|+|ux|)=∂ ⁄∂x(2utux).Это соотношение постулируется и выражает, в частности, гиротезу удара:

ut (x, t-0)=-ut(x, t+0), (x,t) ∈ suppu, u(x,t)=Δ.        (4)

Данные определяют гипотезу удара взаимодействия струны об ограничителем без учета потерь энергии. Данную задачу можно символически записать в виде нелинейного уравнения Клейна - Гордона u+Ф(u)=0, где обобщенная функция Ф(u) определяется указанными соотношениями.

Постановка задачи о поляризованных колебаниях струны, находящейся, например, в трубе, вполне аналогична. Вместо неравенства (2) имеем двойное неравенство u0.

3. Постановка задачи о взаимодействии струны с точечным ограничителем принципиально отличается от предыдущих, так как при достижении точечного ограничителя, струна некоторое время покоится на нем и мы имеем в определенном смысле аналог гипотезы об абсолютно неупругом ударе. При этом гипотеза взаимодействия подразумевает, что потери энергии отсутствуют. Обсуждение моделей диссипации энергии в системах с распределенными ударными элементами не проводится.

Пусть в плоскости колебаний струны зафиксирован точечный ограничитель и пусть точка фиксации есть (0,∆). Таким образом здесь u(0,t)≥∆. Записывая уравнение движения снова в виде нелинейного уравнения Клейна-Гордона, заметим, что при возникновении контакта струны с ограничителем, как отмечалось, ее серединная точка будет некоторое время покоится. Если tk -начало k-го взаимодействия, а θk - его окончание: u(0,t)=∆, t∈[tkk], то Ф(u)=-ΣRk(t)δ(x)[η(t-tk)-η(θ-θk)], где к -индексы по которым проводится суммирование,δ(x) и η(t) - δ-функция Дирака и единичная функция Хевисайда;Rk(t)= ux(-0,t) - ux(+0,t) ≥0, t∈ [tkk] - сила реакции ограничителя. При реализации строгого неравенства) контакт отсутствует. Действие точечного ограничителя равносильно систематическому дополнительному защемлению (в данном случае - середины) струны.

Подробное изложение данных проблем дано в [1]. (Поддержка РФФИ 05-08-50183).

СПИСОК ЛИТЕРАТУРЫ:

  1. Крупенин В.Л. К описанию динамических эффектов, сопровождающих колебания струн вблизи однотавровых ограничителей // ДАН. 2003. № 388 (3). С.31- 38.