Промышленные сточные воды многих химических, текстильных, машиностроительных, электротехнических заводов, предприятий цветной металлургии и других отраслей промышленности в большей или меньшей степени загрязнены солями цветных и тяжелых металлов. Наиболее часто они загрязнены солями цинка, кадмия, меди, хрома, никеля, ртути, железа реже содержат кобальт, марганец. В сточных водах практически никогда не содержится только один вид катионов, а содержится смесь нескольких солей минеральных кислот.
С каждым годом расширяется сфера использования редких металлов - это радиоэлектроника, металлургия, авиация, химическая промышленность. Высокая стоимость, сложность переработки редких металлов привели к необходимости получения тонких металлических пленок на поверхности деталей. Для этой цели в настоящее время в гальванической технике используются такие редкие металлы как индий, молибден, германий, галлий и таллий. Промывные воды, как правило, содержат достаточное количество этих элементов.
Истощение природных ресурсов и загрязнение окружающей природной среды заставляют искать способы получения сырья из производственных отходов. Одним из таких направлений является разработка новых эффективных методов переработки сточных вод гальванотехники. Сточные воды и природные воды с повышенным содержанием токсичных тяжелых металлов особо опасны. Существует необходимость решения ряда технических, экономических и экологических проблем.
Загрязнение водной среды ионами тяжелых металлов опасно для всей биосферы, а также свидетельствует о расточительном отношении к ресурсам. Со сточными водами гальванотехники теряется более 50 % металлов, предназначенных для декоративных, защитных и других покрытий. Кроме того, тяжелые металлы оказывают токсичное воздействие на живые и растительные организмы, имеют тенденцию к накапливанию в пищевых цепочках, что усиливает их опасность для человека. Наиболее опасны ионные комплексные формы тяжелых металлов. Медь, марганец, кобальт, никель, цинк, кадмий, железо, хром относятся к группе токсичных тяжелых металлов. Это вызывает необходимость строгого контроля за их поступлением в окружающую среду, что требует на практике использование сравнительно недорогих, доступных методов их улавливания.
Одним из таких методов является ионный обмен с применением комплексообразующих ионитов [1, 2]. Эффективность и экономичность извлечения ионов цветных, тяжелых и редких металлов из сточных вод методом ионного обмена зависит от их концентрации в воде, рН, общей минерализации воды.
Гальваническое производство относится к разряду весьма опасных источников загрязнения окружающей среды. Существует необходимость, рассматривать варианты бессточных систем водоиспользования с максимально возможным сокращением расхода свежей воды на промывку деталей.
Ионообменная очистка сточных вод от ионов металлов получает все большее распространение. С экономической точки зрения наиболее целесообразна ионообменная очистка не общего стока гальванического производства, а сточных вод, образующихся в отдельных технологических процессах и операциях и содержащих как можно меньше количества металлов и кислот.
В этом случае переработка и возврат в производство концентрированных растворов, образующихся при регенерации ионитов и содержащих различные химические продукты, вызывает наименьшие трудности.
Ионообменные методы регенерации позволяют не только полностью извлекать цветные, тяжелые и редкие металлы из отработанных растворов, но также получать продукты регенерации в виде чистых солей металлов, пригодных для повторного использования в производстве с целью приготовления заново и корректировки работающих электролитов. Кроме того, получаемая после ионообменной обработки очищенная вода в большинстве случаев без дополнительной обработки может быть использована в качестве оборотной.
Таким образом, использование ионообменных методов с целью регенерации металлов позволяет достичь практически безотходной технологии в гальванических производствах.
Сточные воды при нанесении медно-цинкового покрытия содержат 20-25 мг/дм3 ионов меди и 40-45 мг/дм3 ионов цинка. Обменная емкость фосфорнокислого катионита КФП-12 по меди и цинку составляют 9,2 и 13,4 мг/г соответственно. Таким образом, происходит концентрирование ионов меди и цинка из раствора. Разделить данные ионы возможно на стадии десорбции.
Вымывание ионов будет определяться рН среды и образованием более устойчивого комплексного соединения при взаимодействии катиона металла с реагентом десорбирующего раствора, чем полимерный комплекс. Медь и цинк по разному ведут себя в растворах по отношению к серной кислоте. Медь образует более устойчивые сульфатные комплексы, по сравнению с цинком, поэтому серная кислота является более эффективным десорбентом для ионов меди. На основании этого было проведено разделение ионов меди и цинка на стадии десорбции 0,2 моль/дм3 раствором серной кислоты. При пропускании 0,2 моль/дм3 серной кислоты через колонку с ионитом сначала десорбируются ионы меди, а затем ионы цинка.
Количественное разделение осуществляется при промывании насыщенного катионита ионами металлов растворами, компоненты которых образуют с ионами металлов малодиссоциирующие растворимые комплексные ионы или соединения. Процесс десорбции ионов переходных металлов на фосфорнокислом катионите можно выразить реакцией:
константа равновесия, которой будет
Перестройка комплексов будет проходить при , то есть если константы устойчивости растворимых комплексов будут больше соответствующих констант полимерного комплекса.
Таким образом, установлены условия разделения и концентрирования ионов цинка и меди из отходов процесса рафинирования цинка.
Список литературы
- Копылова В.Д. Комплексообразование в фазе ионитов. Свойства и применение ионитных комплексов // Теория и практика сорбционных процессов. - Воронеж, 1999. - Вып. 25. - С. 146-158.
- Копылова В.Д., Меквабишвили Т.В., Гефтер Е.Л. Фосфорсодержащие иониты. - Воронеж, 1992. - 192 с.