Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,746

PHENOMENON OF CRYOBIOGENESIS AND SELF-FORMATION OF PERMAFROST GEOCHEMICAL LANDSCAPES

Taisaev T.T.
Самоорганизация мерзлотных геохимических ландшафтов определяется явлением криобиогенеза и эффектами, которые он вызывает. Криобиогенез - это единство и взаимосвязь биогенных и криогенных процессов, формирующих мерзлотную экосистему, в которой геохимические процессы и миграция химических процессов тесно взаимосвязаны и взаимообусловлены энергией, веществом и информацией живого вещества и криогенеза. Главным условием возникновения и развития мерзлотных ландшафтов является непрерывный периодический (зима-лето) круговорот вещества во времени - криогенный и биогенный, проявляющийся в единстве, взаимодействии и соответствии друг с другом. Периодичность и взаимодействие этих главных противоположных процессов обеспечивают целостность и устойчивость системы. Периодичность явлений (зима-лето, оледенение - межледниковье) - важный признак мерзлотных ландшафтов. Этот признак обобщающий критерий и мера самоорганизации системы. В мерзлотном ландшафте биологический круговорот выполняет основную организующую роль. Он связывает воедино биогенный и криогенный циклы миграции - потоки вещества и энергии биогенеза и криогенеза, создают новую информационную систему, отличную от исходных составляющих. Криогенез и самоорганизация наиболее ярко проявляются в экосистемах на рудных провинциях, геохимически специализированных породах, нефтегазоносных и угленосных породах. Высокая самоорганизация мерзлотных ландшафтов (экосистем) Северной Азии с высокой биопродуктивностью и биоразнообразием с обилием животных (звери и рыбы) были главным фактором этногенеза.
Self-formation of permafrost landscapes is determined by the phenomenon of cryobiogenesis and its effects. Cryobiogenesis is a unity and cooperation of biogenic and cryogenic processes that form permafrost ecosystem, where geochemical processes and migration of chemical elements are closely associated and interconditioned by energy, matter and information of living matter and cryogenesis. Continious periodical (winter-summer) circulation of mater in time i.e. cryogenic and biological one that is characterized by unity, interaction and cooperation with each other is the main condition of origin and development of permafrost landscapes. Periodicity and interaction of the main opposite winter (cryogenic) and summer (biogenic) processes provide integrity and stability of the system. The periodicity of phenomena (winter-summer, glaciation-Interglacial) is an important feature of permafrost landscapes. This feature is a generalizing criterion and measure of the system self-formation. The biological circulation plays the main forming role in the permafrost landscapes. They joint together the biogenic and cryogenic cycles of migration i.e. flows of matter and energy of biogenesis and cryogenesis, present the new information in the system that is different from the original components. Cryobiogenesis and self-formation are most brightly shown in ecosystems of the ore provinces, geochemically specialized sedimentary rocks, oil-,gas- and coal- bearing areas. High self-formation of permafrost ecosystems in the North Asia with high bioproductivity and biodivercity of fauna abudance (animal and fish) was the maior factor of ethnogenesis.

В северном полушарии мерзлотные ландшафты (экосистемы) Аляски, Канады и России занимают огромные территории. В России эти системы охватывают более 55% ее территории, где сосредоточены значительные минеральные и биологические ресурсы. Чтобы их рационально использовать и сохранить, необходимо исследовать процессы самоорганизации систем, определяющих устойчивость, структуру и функционирование их.

В.И. Вернадский [1] и его последователи [2,3] установили, что основной самоорганизации и саморегуляции природных химических ландшафтов является биологический круговорот элементов - образование живого вещества и его разложение. А.И. Перельман [3] показал, что «геохимический ландшафт  - это сложная, открытая, динамическая, резко неравновесная система, но упорядоченная, стационарная саморегулирующая система земной поверхности с многими положительными и отрицательными обратными связями. Самоорганизация ландшафта - это выражение его целостности, относительный самостоятельности - способности сохранять свои особенности при изменении внешних условий (в первую очередь макроклимата), а также сохранение устойчивости ландшафта, структуры и функционирования его».

В природных системах непрерывно из физического, геологического, биологического, социального хаоса возникают устойчивые упорядоченные структуры - системы с новыми свойствами. К ним относятся  высокоупорядоченные пространственные и временные структуры, возникшие из «хаотических» состояний природных тел (микроорганизмов, растений, животных, воды, горных пород). По современным представлениям  [4,5,6], самоорганизация - это автоматический процесс, представляющий участие большого количества объектов (элементов, их соединений, систем), которые определяют совокупное кооперативное действие. В процессе самоорганизации образуются и выживают комбинации, системы-минералы, горные породы и живые организмы, экосистемы, наиболее энергетически выгодные с точки зрения адаптации всего комплекса, сообщества и отдельных организмов. При изучении самоорганизующих систем важным является выявление причин самоорганизации и главных факторов, определяющих действие их в соответствии с иерархической подчиненностью подсистем. В этом отношении интересны мерзлотные биокосные системы.

Мерзлотные геохимические ландшафты - это естественно - исторические комплексы - биогенные ландшафты, образовавшиеся из ряда подсистем в криолитозоне. Они возникали на Земле во время глобальных похолоданий и сформировались в последний четвертичный ледниковый период. Такие открытые неравновесные системы с диссипативными структурами функционируют за счет непрерывного поступления в ландшафт потоков энергии Солнца и криолитозоны Земли.

В мерзлотных ландшафтах - составной части биосферы процесс самоорганизации осуществляется в неравновесных условиях кооперативным взаимодействием биогенных и криогенных процессов. Самоорганизация мерзлотных ландшафтов определяется явлением криобиогенеза и эффектами, которые он вызывает [7]. Криобиогенез - это бинарное (двуединое) природное явление, формирующие мерзлотный ландшафт, самоорганизация которого обусловлена единством и взаимодействием энергии, вещества, информации биогенеза и криогенеза. При этом в геологическом времени создается целостная биокосная система с качественно новым вещественно-энергетическим и  высоким информационным уровнем организации. Криобиогенез как механизм самоорганизации системы определяет внутреннее содержание и динамику ее - единство всех многообразных процессов и их функциональных связей.

Главным условием возникновения и развития мерзлотных экосистем является непрерывный периодический (зима- лето, ледниковье - межледниковье) круговорот вещества и энергии во времени - криогенный и биогенный, проявляющиеся в единстве, взаимодействии и соответствии друг с другом. Периодичность явлений зим и лета - важный признак мерзлотных экосистем. Этот признак является обобщающим критерием и мерой самоорганизации мерзлотной системы. Периодичность и взаимодействие главных противоположных криогенных и биогенных процессов обеспечивают целостность и устойчивость системы.

В мерзлотных экосистемах биологический круговорот выполняют главную организующую роль, и определяет соответствие (когерентность) системы. Он связывает воедино биогенный и криогенный циклы миграции - потоки вещества и энергии биогенеза и криогенеза, создают новую информационную систему, качественно отличную от исходных составляющих. Криобиогенез наиболее активно проявляется в экосистемах на рудоносных осадочных породах былых биосфер, рудных провинциях и лессах, нефтегазоносных и угленосных площадях, где в биогеохимический цикл вовлекается большая масса химических элементов. При этом усиливается биопродуктивность системы и как следствие биоразнообразие, повышается геохимическая энергия живого вещества.

Самоорганизация мерзлотного ландшафта как биокосной системы обеспечивается внутренними связями зоны криогенеза с биогенными процессами. Это способствует сохранению структуры и функционированию системы и его устойчивости при стабильном термическом режиме криолитозоны. В ландшафте механизм самоорганизации регулируется сезонным режимом тепла и определяется возникновением и развитием двух основных геохимических циклов (зимнего и летнего) системы.

Зимний цикл. При криогенном выветривании горных пород возникают геохимические поля [8]. Незамерзающие пленочные воды (растворы) под воздействием градиента концентрации и температуры формируют восходящие потоки вещества к поверхности, образуют криогенные солевые ореолы в почвах, дисперсных отложениях, в снежном и ледяном покрове [9,10,11]. При криогенной метаморфизации вод характерно увеличение минерализации их, осаждение (вымораживание) карбонатов, сульфатов и других солей с микроэлементами. Высокая растворимость кислорода и углекислого газа в пленочных водах способствуют выветриванию алюмосиликатов, окислению сульфидов. Зимой при окислении сульфидных руд образуются сульфатные зоны легко растворимых солей железа, меди и других рудных минералов [12,13]. В криолитозоне возникают разнообразные глинистые минералы - криопелит с высокой поверхностной энергией. Криогенные процессы способствуют концентрации химических элементов и увеличению информации в ландшафте, формированию криогенных геохимических барьеров. С последними связаны разнообразные геохимические аномалии и энергетически наиболее устойчивые для мерзлотной системы минералы и горные породы. Снежный покров играет большую роль в жизни некоторых животных и растений. Он служит убежищем для них, защищает от холода. Некоторые  грызуны (лемминги, полевки) размножаются под снегом. Грызуны под снегом находят обильный корм - корни многолетних трав. Многие копытные (северные олени, овцебыки, кабаны, лошади) питаются растительностью из-под снега.

Зимой биологический круговорот резко ослаблен. Он поддерживается многолетними растениями, которые зимой удерживают минеральные и питательные вещества и обеспечивают начало пищевой цепи для многих животных. В питание травоядных и птиц тайги и тундры преобладает грубый корм: ветви, корни, семена, лишайники. Зимой бурый медведь, сурки, суслики и другие залегают в спячку, используют летние запасы питательных веществ обеспечивает их необходимой энергией. Зимняя спячка решает проблему питания, является надежным средством борьбы с холодом, спасает животных от бескормицы, сохраняет их половые клетки и зародыши. При глубоком замерзании сохраняются семена растений. Сохранение генетической информации при криогенной консервации является одним из главных приспособлений растений и животных к холоду и развития биологического круговорота в течение года и функционирования мерзлотной экосистемы. Зимой в ландшафте происходит мобилизация минеральных веществ из зоны криогенеза и концентрация их  в почве, дисперсных отложениях, снегу, льду. Зона криогенеза - один из основных источников минерального питания растений и животных. Часть подвижных элементов после разложения живого вещества снова возвращается в ландшафт и вовлекается в биологический круговорот.

Летний цикл и биохимические барьеры. Летом накопившиеся за зиму в ландшафте (почве, криолитозоне, снежном покрове) химические элементы активно вовлекаются в биологический круговорот и круговорот воды. Происходит усиление биогенной и водной миграции элементов, образования живого вещества и функционирования биологической системы. Весной сочный зеленый корм, талые воды и обилие природных солонцов - продуктов криогенеза быстро ликвидируют минеральный голод у травоядных животных. У самок лосей, маралов, диких северных оленей, косуль происходит быстрое развитие зародыша и появление потомства, у самцов - рогов - концентраторов химических элементов.

Важную роль в самоорганизации мерзлотных ландшафтов выполняют биогеохимические барьеры. Они удерживают значительное количество органического и минерального вещества и препятствуют выносу их за пределы ландшафта. Химические элементы поступают на барьер из криогенных образований - почв, со склоновыми и выходящими трещинными водами. Биогеохимический барьер усиливает информацию в ландшафте - увеличивается масса живого вещества, концентрация элементов, возникают геохимические аномалии рудных элементов  [7.14.15]. В высокогорье в гольцовых ландшафтах растения (кустарники, травы, мох, ягель, лиственница) на рудных полях активно накапливают золото. Золото по пищевым цепям поступает в организм животных, обитающих в ландшафтах на золоторудных полях. Так, в организме длиннохвостого суслика в таких ландшафтах золото в 70-100 раз больше, чем на фоновых.  Золото - универсальный индикатор геохимических процессов в мерзлотных ландшафтах. Этот металл обладает разнообразными формами миграции (механической, водной, биогенной), концентрируется на геохимических барьерах, в т.ч. в снежном покрове. Особенно важно, что по золоту можно видеть единство и взаимосвязь криогенного и биогенного циклов миграции в мерзлотном ландшафте.

Таким образом, летний цикл в системе обеспечивает создание геохимической энергии живого вещества и усиление биологического круговорота - главного фактора самоорганизации мерзлотной системы. Очень важно, что биологические системы мерзлотных ландшафтов способны сохранять и передавать генетическую информацию, возникшую в прошлом в процессе длительной эволюции.

Годичные геохимические циклы - один из универсальных явлений в живой природе и биокосных системах. В мерзлотных экосистемах продолжительный зимний цикл подготавливает базу для энергичного биологического круговорота атомов в сравнительно короткий летний период. Эта особенность определяет глубокую связь между двумя циклами миграции. Закономерное изменение условий миграции элементов в течение года в мерзлотных экосистемах вызвали в эволюции растений и животных разнообразные адаптации, особенно к холоду. В ледниковый период возникли новые виды и сообщества - криофитные растения, мамонтовая фауна, животные тайги, высокогорий, полярных тундр и морей. Формирование экосистемы шло в соответствии с похолоданием климата сверху - вниз. О высокой степени самоорганизации мерзлотных тундростепей и луговых степей средне-позднего плейстоцена свидетельствует мамонтовая фауна. Она обитала на богатых разнотравьем пастбищах с природными солонцами на лессовых и рудоносных породах, нефтегазоносных бассейнах и рудных провинциях Евразии и Северной Америки. Сохранившиеся от вымирания современные виды мамонтовой фауны (лоси, олени, изюбри, косули, яки, горные козлы, снежные бараны и др.) несут генетическую информацию прошлых систем и отражают высокий уровень самоорганизации современных мерзлотных экосистем на геохимически специализированных породах. Такие высокопродуктивные системы с обилием зверя и рыбы были главным фактором освоения их древним человеком [16]. Здесь возникли благоприятные экологические ниши - убежища для человека. Считается, что Homo sapiens - продукт последнего ледникового периода.

Животные-индикаторы самоорганизации экосистем. Особенно велико значение млекопитающих в изучении самоорганизации наземных и аквальных экосистем. Большинство этих животных  венчают пищевую пирамиду, отражают видовой состав трофической связи. «Млекопитающие являются одной из наиболее удобных таксономических групп для изучения связи между биоразнообразием наземных экосистем и климата и не только потому, что они являются одним из наиболее хорошо изученных классов биоты, но и потому, что существует возможность прямого сравнения размещения современных и ископаемых форм, видового состава, разнообразия таксоценов в течении различных эпох плейстоцена и голоцена» [17]. В нашем понимании млекопитающие отражают уровень самоорганизации экосистемы. Животные являются важным звеном и показателем самоорганизации ландшафтов, наличия убежищ в высоких широтах и высокогорье [7]. Они отражают обеспеченность экосистем питательными и минеральными веществами, концентрируются на геохимически специализированных породах. Многие животные являются литофагами, поедают глины, цеолиты, лессы, соли, грязи озер, пьют соленую воду минеральных источников и морей. В гольцово-таежных и таежных ландшафтах на рудоносных площадях Восточного Саяна, Прибайкалья, Забайкалья, Енисейского и Патомского нагорья и др., богатых ягелем и травяно-кустарничковыми сообществами до недавнего времени обитали самые крупные стада диких и домашних северных оленей, были высокопродуктивные охотничьи угодья. Эти ландшафты отличались также богатством лососевых и хариусовых рыб в озерно-речных системах.

Овцебык, песец, северные дикие олени, живущие в арктической пустыне и тундре вдоль побережий Северного ледовитого океана и островах, ярко отражают условия самоорганизации самых суровых экстремально холодных ландшафтов планеты с эффектом криобиогенеза.

Индикаторами самоорганизации и совершенства высокогорных ландшафтов - субальпийских лугов, криофитных степей южных гор Сибири и Монголии являются сообщества фауны - горный козел, горный баран, марал и снежный барс. Барс питается травоядными животными, хорошо отражает связи между биоразнообразием высокогорных экосистем на фосфоритоносных, черносланцевых, бокситоносных, железо-марганцевых породах. В указанных экосистемах, богатых кормовыми ресурсами и обилием природных солонцов, характерна наибольшая концентрация этих животных.  

Возникновение мерзлотных ландшафтов следует рассматривать как скачкообразный процесс развития биосферы, связанного с криолитозоной ледниковых эпох нижнего и среднего протерозоя, рифея - венда и четвертичного периода. В этой связи эволюция органического мира и возникновение новых видов в четвертичное время может быть оценена как высшее проявление происходящих в природной системе процессов самоорганизации, определяемых эффектами криобиогенеза. Такой подход соответствует второму биосферному постулату В.И. Вернадского: в нашем представлении эволюция биогенных мерзлотных ландшафтов идет в направлении максимизации биогенной миграции атомов. Главную роль в функционировании мерзлотных ландшафтов играют информационные связи, определяемые переносом энергии и вещества встречными потоками информации в системе Солнце - криолитозона Земли.

Список литературы

  1. Вернадский В.И. Химическое строение биосферы Земли и ее окружения.-М.: Наука, 1965.-215с.
  2. Глазовская М.А. // Известие РАН. Сер. Географ. 1992, №5.-С. 5-12.
  3. Перельман А.И. // Вестник МГУ, Сер. 5., География, 1995, №4.-С. 10-17.
  4. Пригожин И., Стенгерс И. Порядок из хаоса.-М.: Мир, 1986.-431 с.
  5. Хакен Г. Синергетика.-М.: Мир, 1980.-400 с.
  6. Николис Г., Пригожин И. Самоорганизация в неравновесных системах.-М.: Мир, 1979.-512 с.
  7. Тайсаев Т.Т. // Вестник БГУ. Сер. 3. География, геология. Выпуск 1.-Улан-Удэ, БГУ, 1997.-С. 6-26.
  8. Тютюнов И.А. Процессы изменения и преобразования почв и горных пород при отрицательной температуре. - М.: Изд-во АН СССР, 1960.-125 с.
  9. Макаров В.Н., Винокуров И.П. Геохимические поиски скрытых месторождений в криолитозоне.- Якутск: ИМ СО АН СССР. 1987.- 108 с.
  10. Мельников П.И., Иванов О.П., Макаров В.Н., Питулько В.М., Шварцев С.Л. // ДАН. 1988. т. 303. №4.-С. 963-967.
  11. Тайсаев Т.Т. // ДАН. 1991. т. 317. №2 -С. 440-443.
  12. Птицын А.Б., Сысоева Е.И. // Геология и геофизика, 1995. №3.-С. 90-97.
  13. Юргенсон Г.А. // Записки ВМО. 1997. №5.- С. 15-27.
  14. Тайсаев Т.Т. Геохимия таежно-мерзлотных ландшафтов и поиски рудных месторождений. - Новосибирск: Наука, 1981.-137 с.
  15. Тайсаев Т.Т. // ДАН, 1991. т. 317. №2.- С. 440-443
  16. Тайсаев Т.Т. // ДАН, 2002. т. 382. №5.- С. 674-677
  17. Шварц Е.А., Пушкарев С.В., Кревер В.Т., Островский М.А. // ДАН, 1996. Т. 347. №5. -С. 682-686