Научный журнал
Успехи современного естествознания
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,778

КОЭФФИЦИЕНТ ЗАПАСА ПРИ ОБЪЕМНОМ НАПРЯЖЕННОМ СОСТОЯНИИ ДЛЯ НЕЛИНЕЙНО-УПРУГИХ МАТЕРИАЛОВ

Расчет инженерных конструкций по физически нелинейной схеме обязателен так же, как и существующий расчет по линейной схеме. Без расчета по нелинейной схеме невозможно установить действительный коэффициент запаса.

Вопрос о коэффициенте запаса в нелинейно-упругих задачах отличается исключительной сложностью. Следует различать коэффициент запаса в точке и коэффициент запаса для конструкции. В простейшем случае чистого изгиба балки из нелинейно-упругого материала с выпуклой диаграммой напряжений коэффициент запаса в фибровой точке (он всегда определяется отношением напряжений) меньше коэффициента запаса для балки, если в качестве коэффициента запаса принять отношение изгибающих моментов для предельного и эксплуатационного состояний соответственно (отношение интегралов для возрастающей выпуклой функции). Аналогичная ситуация имеет место при кручении круглого вала. Еще сложнее этот вопрос в случае сложного сопротивления.

При простом нагружении рассмотрим вопрос о коэффициенте запаса в точке, для которой тензор напряжений содержит все компоненты напряжений и приведен к главным напряжениям.

Решение по нелинейной схеме при плоском и объемном напряженных состояниях в настоящее время упирается в установление связи между тензором напряжений и тензором деформаций для данного конструкционного материала. Вариант определяющих соотношений нелинейной теории упругости, развивающий определяющие соотношения школы В.В. Новожилова-К.Ф. Черныха и школы И.С. Цуркова-П.А. Лукаша, разработан в тесном контакте с каждой школой с учетом соотношений Генки-Каудерера и доложен на заседании Президиума Научно-методического совета России по сопротивлению материалов, строительной механики, теории упругости и теории пластичности в 1995 году. В этом варианте определяющих соотношений связь между напряжениями и деформациями только для главных направлений есть Базовый экспериментально-теоретический закон, в котором нелинейные функции приняты в форме нелинейных функций П.А. Лукаша. Обобщенный закон для произвольных направлений записывается на основе положений классической теории напряженно-деформированного состояния [1, 2].

Вопрос о коэффициенте запаса может быть решен с помощью предельных поверхностей состояния материала [3], введенных школой Г.С. Писаренко-А.А. Лебедева. Эти поверхности, учитывающие параметры нелинейности материала, позволяют найти сферическую координату необходимой предельной точки и с помощью луча напряжений [4, 5] найти величину коэффициента запаса. Под лучём напряжений p понимается геометрическая сумма компонентов тензора напряжений, если их число меньше четырех. Пусть на поверхности предельных состояний материала, которая всегда есть физически нелинейная задача, решенная экспериментальным путем, лучу напряжений p соответствует сферическая радиальная координата pipp, определяющая предельный вектор состояния материала для некоторой точки К. При простом нагружении направления этих векторов совпадают. Тогда коэффициент запаса n может быть вычислен следующим образом:

n = pipp/p. (1).

Если предельную поверхность состояния материала аппроксимировать треугольниками, то координату pipp можно находить по методике работы [5].

Когда задан нормативный коэффициент запаса [n], то условие прочности можно записать по аналогии с методикой расчета на выносливость:

n ≤ [n]. (2)

Список литературы

  1. Ершов В.И. Физические и геометрические соотношения нелинейной плоской задачи теории упругости в полярных координатах при малых деформациях // Восьмой Всероссийский съезд по теоретической и прикладной механике: аннотации докладов. - Пермь, 2001. - С. 250.
  2. Ершов В.И. Определяющие соотношения нелинейной теории упругости на основе инвариантов тензора напряжений и тензора деформаций: автореф. дис. ... д-ра физ.-мат. наук. - Минск, 1999. - 32 с.
  3. Лебедев А.А., Ковальчук Б.И., Ламашевский Б.П., Гигиняк Ф.Ф. Расчеты при сложном напряженном состоянии (определение эквивалентных напряжений) // АН УССР. Институт проблем прочности. - Киев, 1979. - 64 с.
  4. Ершов В.И. Условия прочности для нелинейно-упругих материалов // Международный журнал прикладных и фундаментальных исследований. - 2010. - №12. - С. 109-110.
  5. Ершов В.И. Аппроксимация функций допускаемых напряжений для нелинейно-упругих материалов // Международный журнал прикладных и фундаментальных исследований. - 2011. - №8.

Библиографическая ссылка

Ершов В.И. КОЭФФИЦИЕНТ ЗАПАСА ПРИ ОБЪЕМНОМ НАПРЯЖЕННОМ СОСТОЯНИИ ДЛЯ НЕЛИНЕЙНО-УПРУГИХ МАТЕРИАЛОВ // Успехи современного естествознания. – 2011. – № 10. – С. 19-20;
URL: http://natural-sciences.ru/ru/article/view?id=28719 (дата обращения: 03.06.2020).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074