Научный журнал
Успехи современного естествознания
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,823

ПОГЛОЩАЮЩИЕ НЕЙТРОНЫ НАНОТРУБЧАТЫЕ НАПОЛНИТЕЛИ ВЫСОКОТЕМПЕРАТУРНЫХ ПОЛИМЕРОВ

Матюхин П.В. 1 Ястребинская А.В. 1 Черкашина Н.И. 1 Коба В.В. 1
1 ФГБОУ ВПО «Белгородский государственный технологический университет им. В.Г. Шухова»
Среди волокнистых наполнителей наибольший интерес представляют нанотрубчатые наполнители на основе гидросиликатов магния. Разработан состав и технология получения нанотрубчатых наполнителей на основе гидросиликатов магния с повышенной способностью поглощения нейтронного излучения. В зависимости от количества содержащегося в синтезированной фазе бора, продукты гидротермального синтеза обладают различной способностью поглощения тепловых нейтронов. Содержание атомов бора в хризотиле составляет от 9,5 до 10,9 % масс. Волокнистые кристаллы получены из шихты, состоящей из исходных компонентов в соотношении MgO:SiO2:B2O3 = 2,4:0,1:1,5, при давлении 9,81∙106 Па и температуре 423 °K. При этой температуре для завершения процесса серпентинизации требуется трое суток, ввиду того что растворимость кремнезёма очень мала. При увеличении температуры реакции до 573 °К (давление 9,81∙106 Па) реакция завершается за два часа.
нанотрубчатый наполнитель
бор
хризотил
получение
свойства
1. Едаменко О.Д., Ястребинский Р.Н., Соколенко И.В., Ястребинская А.В. Нанонаполненные полимерные композиционные радиационно-защитные материалы авиационно-космического назначения // Современные проблемы науки и образования. – 2012. – № 6. – С. 128.
2. Матюхин П.В., Павленко В.И., Ястребинский Р.Н. Композиционный материал, стойкий к воздействию высокоэнергетических излучений // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. – 2012. – № 2. – С. 25–27.
3. Матюхин П.В., Павленко В.И., Ястребинский Р.Н., Бондаренко Ю.М. Перспективы создания современных высококонструкционных радиационно-защитных металлокомпозитов // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. – 2011. – № 2. – С. 27–29.
4. Матюхин П.В., Павленко В.И., Ястребинский Р.Н., Бондаренко Ю.М. Композиционный материал для радиационной защиты // Патент РФ №2470395, 20.12.2010.
5. Матюхин П.В., Ястребинский Р.Н. Исследование механизмов модифицирования поверхности природных железорудных минералов алкилсиликонатами // Известия высших учебных заведений. Серия: Химия и химическая технология. – 2005. – Т. 48, № 4. – С. 140.
6. Огрель Л.Ю., Ястребинская А.В., Бондаренко Г.Н. Полимеризация эпоксидного связующего в присутствии добавки полиметилсилоксана // Строительные материалы. – 2005. – № 9. – С. 82–87.
7. Огрель Л.Ю., Ястребинская А.В. Структурообразование и свойства легированных эпоксидных композитов // Строительные материалы. – 2004. – № 8. – С. 48–49.
8. Павленко В.И., Ястребинский Р.Н. Полимерные радиационно-защитные композиты / Монография. – Белгород, БГТУ им. В.Г. Шухова, 2009. – 199 с.
9. Павленко В.И., Епифановский И.С., Ястребинский Р.Н., Куприева О.В. Термопластичные конструкционные композиционные материалы для радиационно й защиты // Перспективные материалы. – 2010. – № 6. – С. 22–28.
10. Павленко В.И., Едаменко О.Д., Ястребинский Р.Н., Черкашина Н.И. Радиационно-защитный композиционный материал на основе полистирольной матрицы // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. – 2011. – № 3. – С. 113–116.
11. Павленко В.И., Ястребинская А.В., Павленко З.В., Ястребинский Р.Н. Высокодисперсные органосвинецсилоксановые наполнители полимерных матриц // Известия высших учебных заведений. Северо-Кавказский регион. Серия: Технические науки. – 2010. – № 2. – С. 99–103.
12. Павленко В.И., Ястребинский Р.Н., Ястребинская А.В. Полимерные диэлектрические композиты с эффектом активной защиты // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. – 2009. – № 3. – С. 62–66.
13. Павленко В.И., Липканский В.М., Ястребинский Р.Н. Расчеты процессов прохождения гамма-квантов через полимерный радиационно-защитный композит // Инженерно-физический журнал. – 2004. – Т. 77, № 1. – С. 12–15.
14. Павленко В.И., Епифановский И.С., Ястребинский  Р.Н. Радиационно-защитный бетон для биологической защиты ядерных реакторов // Перспективные материалы. – 2006. – № 3. – С. 22.
15. Павленко В.И., Воронов Д.В., Ястребинский Р.Н. Радиационно-защитный тяжелый бетон на основе железорудного минерального сырья // Известия высших учебных заведений. Строительство. – 2007. – № 4. – С. 40–42.
16. Павленко В.И., Ястребинский Р.Н., Смоликов А.А., Дегтярев С.В., Воронов Д.В. Радиационно-защитный бетон для биологической защиты ядерных реакторов // Перспективные материалы. – 2006. – № 2. – С. 47–50.
17. Павленко В.И., Ястребинский Р.Н., Воронов Д.В. Тяжелый бетон для защиты от ионизирующих излучений // Строительные материалы. – 2007. – № 8. – С. 48–49.
18. Павленко В.И., Ястребинский Р.Н., Воронов Д.В. Исследование тяжелого радиационно-защитного бетона после активации быстрыми нейтронами и гамма-излучением // Инженерно-физический журнал. – 2008. – Т. 81, № 4. – С. 661–665.
19. Павленко В.И., Смоликов А.А., Ястребинский Р.Н., Дегтярев С.В., Панкратьев Ю.В., Орлов Ю.В. Радиационно-защитный бетон для АЭС c РБМК на основе железо-серпентинитовых композиций с цементным связующим // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. – 2004. – № 8. – С. 66.
20. Павленко В.И., Куприева О.В., Черкашина Н.И., Ястребинский Р.Н. Дефектность кристаллов модифицированного гидрида титана, подвергнутого термической обработке // Известия высших учебных заведений. Физика. – 2015. – Т. 58, № 5. – С. 125–129.
21. Павленко В.И., Ястребинский Р.Н., Матюхин П.В., Ястребинская А.В., Куприева О.В., Самойлова Ю.М. Радиационно-защитные транспортные контейнеры отработавшего ядерного топлива на основе высоконаполненной полимерной матрицы и железорудного сырья КМА // В сборнике: Региональная научно-техническая конференция по итогам конкурса ориентированных фундаментальных исследований по междисциплинарным темам, проводимого РФФИ и Правительством Белгородской области. – Белгород: БГТУ им. В.Г. Шухова, 2015. – С. 320–330.
22. Соколенко И.В., Ястребинский Р.Н., Крайний А.А., Матюхин П.В., Тарасов Д.Г. Моделирование прохождения высокоэнергетических электронов в высоконаполненном полимерном композите // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. – 2013. – № 6. – С. 145–148.
23. Ястребинская А.В., Огрель Л.Ю. Разработка и применение композиционного материала на основе эпоксидиановой смолы для строительных конструкций и теплоэнергетики // Современные наукоемкие технологии. – 2004. – № 2. – С. 173.
24. Ястребинская А.В., Павленко В.И., Ястребинский Р.Н. Коррозионно-стойкие полимеркомпозиты на основе эпоксидных и полиэфирных олигомеров для строительства // Перспективы развития строительного комплекса. – 2012. – Т. 1. – С. 243–247.
25. Ястребинский Р.Н., Павленко В.И., Ястребинская А.В., Матюхин П.В. Структурообразование металлоолигомерных водных дисперсий // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. – 2012. – № 2. – С. 121–123.
26. Ястребинский Р.Н., Павленко В.И., Матюхин П.В., Воронов Д.В., Павленко З.В., Самойлова Ю.М. Конструкционные радиационно-защитные композиционные материалы на основе модифицированных железорудных пород КМА // В сборнике: Региональная научно-техническая конференция по итогам конкурса ориентированных фундаментальных исследований по междисциплинарным темам, проводимого РФФИ и Правительством Белгородской области. – Белгород: БГТУ им. В.Г. Шухова, 2015. – С. 491–499.
27. Ястребинская А.В., Павленко В.И., Матюхин П.В., Воронов Д.В. Механическая активация полимерных диэлектрических композиционных материалов в непрерывном режиме // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. – 2009. – № 3. – С. 74–77.
28. Ястребинский Р.Н., Павленко В.И., Матюхин П.В., Четвериков Н.А. Композиционный материал для защиты от гамма-излучения // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. – 2011. – № 3. – С. 17–20.
29. Ястребинская А.В. Модифицированный конструкционный стеклопластик на основе эпоксидных олигомеров для строительных изделий: Автореф. дис. канд. техн. наук. / Белгородский государственный технологический университет им. В.Г. Шухова. Белгород. Изд-во БГТУ им. В.Г. Шухова, 2004. – 19 с.
30. Ястребинский Р.Н., Павленко В.И., Бондаренко Г.Г., Ястребинская А.В., Черкашина Н.И. Модифицированные железооксидные системы – эффективные сорбенты радионуклидов // Перспективные материалы. – 2013. – № 5. – С. 39–43.
31. Ястребинский Р.Н., Бондаренко Г.Г., Павленко В.И. Транспортный упаковочный комплект для радиоактивных отходов на основе радиационно-защитной полимерной матрицы / Перспективные материалы. – 2015. – № 6. – С. 25–31.
32. Pavlenko V.I., Yastrebinskii R.N., Kuprieva O.V., Epifanovskii I.S. Thermoplastic constructional composite material for radiation protection // Inorganic Materials: Applied Research. – 2011. – Т. 2, № 2. – Р. 136–141.
33. Pavlenko V.I., Yastrebinskii R.N., Lipkanskii V.M. Simulation of the processes of gamma-radiation transport through shielding containers for radioactive waste // Russian Physics Journal. – 2003. – Т. 46, № 10. – Р. 1062–1065.
34. Pavlenko V.I., Yastrebinskij R.N., Degtyarev S.V. Modeling of processes of interaction of high-energy radiations with radiation-protective oxide of iron composites // Электромагнитные волны и электронные системы. – 2005. – Т. 10, № 1–2. – Р. 46–51.

В качестве непрерывных армирующих наполнителей наиболее широко используют волокнистые нано-углеродные, графитовые, борные, карбидные, нитридные, оксидные, стеклянные, базальтовые и полимерные химические волокна – раздельно или в любом сочетании одного волокна с другим. Среди волокнистых наполнителей наибольший интерес представляют нанотрубчатые наполнители на основе гидросиликатов магния [1–11].

Анализ существующих проблем в области создания защиты космической ЯЭУ показал, что необходим принципиально новый подход к конструированию биологической защиты, позволяющий ослабить влияние ионизирующего излучения до установленных норм при меньшей массе защиты космической ЯЭУ [12–21].

В этом направлении наиболее перспективна разработка термостойких, высокопрочных радиационно-защитных композиционных материалов на основе термостойкой полимерной матрицы, армированной нанотрубчатыми волокнами с повышенной способностью поглощения нейтронов. На основе оценки широкого спектра российских и зарубежных литературных источников в качестве волокнистых наполнителей полимерной матрицы предложено использование нанотрубчатых наполнителей на основе гидросиликатов магния системы МgO – SiO2 – H2O, обладающих повышенными механическими и радиационно-защитными характеристиками по отношению к нейтронному излучению [22–34].

Цель исследования

Разработать состав и технологию получения нанотрубчатых наполнителей на основе гидросиликатов магния с повышенной способностью поглощения нейтронного излучения.

Материалы и методы исследования

Для получения нанотрубчатых наполнителей с повышенной способностью замедления нейтронов при синтезе волокон хризотила использовали добавки с содержанием кристаллизационной воды, в частности буру (Na2B4O7∙10Н2О) и кристаллогидрат двухвалентного железа (FeSO4∙7Н2О – железный купорос), а для поглощения тепловых нейтронов – борсодержащие соединения, в частности, борную кислоту.

Все образцы синтезированы из шихты, состоящей из смеси магния и кремниевой кислоты с соотношением компонентов 3:2. Исследованные образцы синтезировали при 673 °К, давлении водяного пара 9,81∙107 Па и суточной изотермической выдержке в присутствии различных добавок.

Для получения образца хризотила с содержанием буры брали 10–4 кг этой соли.

Результаты исследования и их обсуждение

Кривые ДТА и потери массы (ТГ) синтетических хризотилов, синтезированных с указанными добавками представлены на рис. 1.

Известно, что бор хорошо поглощает тепловые нейтроны и может изоморфно замещать кремний в минералах. В связи с этим нами синтезирован серпентин с более высокой способностью поглощения нейтронов.

В качестве исходных материалов для синтеза борсодержащего хризотила мы использовали оксид (или гидроксид) магния, кремниевую и борную кислоты. Синтез проводили при молекулярных сооношениях MgO:SiO22O3 = 1,5 – 2:1 – 0,1:0,1 – 1,5 (учитывая требование MgО:(SiO2 + B2O3) = 1,5, т.е., чтобы отношение окислов соответствовало таковому в серпентине), при температурах 423–573 °К, давлении 9,81∙106 – 2,45∙108 Па и продолжительности изотермической выдержки 2–72 часа. Полученный материал, в отличие от существующих серпентинов, содержит в своём составе бор. Принадлежность синтезированной фазы к серпентину доказывается результатам рентгеновского анализа.

В зависимости от количества содержащегося в синтезированной фазе бора, продукты гидротермального синтеза обладают различной способностью поглощения тепловых нейтронов.

Волокнистые кристаллы получены из шихты, состоящей из исходных компонентов в соотношении MgO:SiO2:B2O3 = 2,4:0,1:1,5, при давлении 9,81∙106 Па и температуре 423 °K. При этой температуре для завершения процесса серпентинизации требуется трое суток, ввиду того что растворимость кремнезёма очень мала. Транспортирующим агентом для кремнезёма в гидротермальных условиях служат как вода, так и пар, следовательно, чем больше воды в реакционном объёме автоклава при данной температуре, тем больше в ней растворено кремнезёма, но увеличение количества воды приводит к увеличению давления. При увеличении температуры реакции до 573 °К (давление 9,81∙106 Па) реакция завершается за два часа. Продукты реакции представлены на рис. 2. Содержание атомов бора в хризотиле составляет от 9,5 до 10,9 % масс.

mat1.wmf

Рис. 1. Кривые ДТА (T = 653 °К) и ТГ синтетических хризотилов, синтезированных с добавкой по отношению к массе шахты: 1–5 % FeSO4∙7Н2О; 2 – Na2B4O7∙10Н2О

mat2.tif

Рис. 2. Серпентин состава Mg6(OH)8SiB3O10. Синтез при 573 °К и 9,81∙106 Па в течение 2 час

Заключение

Разработан состав и технология получения нанотрубчатых наполнителей на основе гидросиликатов магния с повышенной способностью поглощения нейтронного излучения. В зависимости от количества содержащегося в синтезированной фазе бора, продукты гидротермального синтеза обладают различной способностью поглощения тепловых нейтронов. Содержание атомов бора в хризотиле составляет от 9,5 до 10,9 % масс.

Работа выполнена при поддержке гранта РФФИ, проект № 14-08-00325.


Библиографическая ссылка

Матюхин П.В., Ястребинская А.В., Черкашина Н.И., Коба В.В. ПОГЛОЩАЮЩИЕ НЕЙТРОНЫ НАНОТРУБЧАТЫЕ НАПОЛНИТЕЛИ ВЫСОКОТЕМПЕРАТУРНЫХ ПОЛИМЕРОВ // Успехи современного естествознания. – 2015. – № 10. – С. 36-39;
URL: http://natural-sciences.ru/ru/article/view?id=35646 (дата обращения: 20.09.2020).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074