Знание математической модели процесса позволяет прогнозировать условия изготовления, строение и свойства ткани, оценить степень влияния входных факторов.
Анализ литературы позволил установить, что для математического описания технологического процесса ткачества ранее использовались экспериментальные методы, заключающиеся в обработке экспериментальных данных, полученных в результате реализации математико-статистических методов планирования эксперимента.
Кроме этих методов существуют также методы приближения функций, которые не нашли широкого применения, поскольку требуют проведения значительного количества вычислений, то есть являются очень трудоемкими.
В настоящее время появилась современная вычислительная техника, позволяющая автоматизировать весь процесс исследования какого- либо процесса при наличии всех необходимых для этого средств исследования. Поэтому стало возможным использование методов приближения функций для математического описания технологических процессов.
Сущность методов приближения функций заключается в замене одной функции, которая чаще всего известна лишь эмпирически, другой функцией более простого вида. С этой целью можно применять различные интерполяционные полиномы, в частности, полином Лагранжа.
Для использования этого полинома при исследовании технологического процесса ткачества был составлен автоматизированный алгоритм, в соответствии с которым необходимо:
- На технологическом оборудовании, установленном в ткацком производстве или в лабораторных условиях, с помощью контрольно-измерительных приборов получить диаграмму или осциллограмму натяжения нитей. На диаграмме или осциллограмме выделить участок, после которого цикл натяжения нитей повторяется.
- Для получения дискретной информации об исследуемом процессе разбить диаграмму или осциллограмму натяжения нитей с выбранным постоянным шагом h изменения аргумента.
- На основе экспериментальных данных натяжения произвести вычисления коэффициентов полинома.
- Подставить коэффициенты в полином Лагранжа, общий вид которого:
Р(х) = В0 +В1(х -xо) + В2(х -xо)(х -x1)+ ... + Вп (х -xо)(х -x1)...(x -xп-1)
Для получения диаграммы натяжения нитей основы в лаборатории ткачества кафедры «Технология текстильного производства» Камышинского технологического института (филиал Волгоградского государственного технического университета) был проведен эксперимент на ткацком станке СТБ-2-216.
Полученная в результате эксперимента диаграмма обрабатывалась в соответствии с вышеуказанным алгоритмом. В среде программирования Mathcad было получено несколько математических моделей с различным шагом интерполяции. Оценка эффективности полученных математических моделей производилась в табличном процессоре Excel путем расчета относительной средней квадратической ошибки для всех значений аргумента хi по формуле
 ,
,
где  - относительная величина квадратической ошибки для каждого значения аргумента хi, , %;
- относительная величина квадратической ошибки для каждого значения аргумента хi, , %;
N- количество экспериментальных значений натяжения основных нитей.
 ,
,
где  - абсолютная средняя квадратическая ошибка для каждого значения аргумента хi;
- абсолютная средняя квадратическая ошибка для каждого значения аргумента хi;
 ,
,
где  - экспериментальные значения натяжения основных нитей, сН
- экспериментальные значения натяжения основных нитей, сН
 - теоретические значения натяжения основных нитей, вычисленные по математической модели, сН
- теоретические значения натяжения основных нитей, вычисленные по математической модели, сН 
В зависимости от выбранного шага модели имели следующие величины относительной средней квадратической ошибки для всех значений аргумента (см. табл.1).
Таблица 1. Показатели относительной средней квадратической ошибки в зависимости от шага интерполяции
| Шаг интерполяции | Величина относительной средней квадратической ошибки на интервале (0; 360 град.), % | Величина относительной средней квадратической ошибки на интервале (80; 280 град.), % | 
| 5 | 84,29 | 100,00 | 
| 10 | 68,50 | 81,95 | 
| 15 | 84,01 | 96,51 | 
| 20 | 47,92 | 46,40 | 
| 30 | 21,80 | 7,25 | 
| 40 | 37,20 | 2,37 | 
| 60 | 3,51 | 3,28 | 
| 80 | 10,20 | 5,68 | 
| 120 | 10,30 | 5,72 | 
Из таблицы 1 видно, что на узком интервале (80; 280 град.) более эффективной математической моделью является та, которая построена с шагом h=40 град. Однако для исследования натяжения нитей на всем интервале эту модель использовать нецелесообразно вследствие большой величины относительной средней квадратической ошибки. В этом случае следует выбирать математическую модель с шагом h=60 град. И в том, и в другом случае величины относительной средней квадратической ошибки на интервале (80; 280 град.) не превышают допустимой нормы δ=5 %, следовательно, математические модели с шагом h=40 и h=60 град. могут быть использованы для прогнозирования изменения натяжения нитей в ткачестве для точек, близких к середине интервала.
Выводы:
- Проанализированы методы приближения функций, которые могут применяться для описания технологических процессов ткацкого производства.
- С использованием полинома Лагранжа получены математические модели натяжения нитей основы при исследовании процесса ткачества и проведена оценка их эффективности.
- Разработаны автоматизированный алгоритм по использованию метода приближения функций с применением интерполяционного полинома Лагранжа для прогнозирования изменения натяжения на ткацком станке и рекомендации по использованию полинома Лагранжа при анализе натяжения в технологическом процессе ткачества.
Библиографическая ссылка
Назарова М.В., Березняк М.Г. РАЗРАБОТКА АВТОМАТИЗИРОВАННОГО МЕТОДА ПРИБЛИЖЕНИЯ ФУНКЦИЙ С ИСПОЛЬЗОВАНИЕМ ПОЛИНОМА ЛАГРАНЖА ДЛЯ ОПИСАНИЯ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ТКАЧЕСТВА // Успехи современного естествознания. 2006. № 12. С. 90-91;URL: https://natural-sciences.ru/ru/article/view?id=13124 (дата обращения: 01.11.2025).



