Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

В настоящее время в качестве молекулярного механизма развития многих патологий принята гипотеза о нарушении проницаемости биомембран за счет изменения интенсивности свободнорадикального окисления липидов [1].

Особенно большое внимание уделяется свободнорадикальному механизму старения, адаптации к неблагоприятным воздействиям окружающей среды, режима трудовой деятельности, а также развитию раковых заболеваний.

Для профилактики и лечения различных физиологических состояний и патологий широко применяется антиоксидантотерапия.

Очевидно, что прогресс в антиоксидантотерапии возможен на основе разработки биоадекватных способов тестирования антиоксидантов. Как известно, липиды в клетке образуют водно-эмульсионные системы, включающие аминокислотные и белковые компоненты, ферменты. Последние, чаще всего, представляют собой координационные соединения (КС) и содержат катионы железа, меди и других элементов в качестве координационного центра. В то же время известные способы тестирования антиоксидантов [2, 3] рассчитаны на безводную среду, применение в качестве субстратов углеводов: этилбензола, кумола или растворов этилолеата, метиллинолеата в хлорбензоле.

В настоящем сообщении приведены результаты исследования кинетики каталитического окисления водно-липидных субстратов с целью разработки биоадекватного метода тестирования антиоксидантов.

С этой целью изучено, прежде всего, мицеллообразование в двух-, трехкомпонентных системах: этилолеат - вода; этилолеат - вода - эмульгатор. По наименьшей величине критической концентрации мицеллообразования выбран состав водно-липидного субстрата, включающий этилолеат и воду в соотношении 1:3 (по объему) и цетилтриметиламмоний бромид в качестве эмульгатора в концентрации (1-3)·10-3 моль/л.

Далее исследовано влияние солей d-элементов четвертого периода периодической системы элементов на кинетику окисления водно-липидного субстрата. С этой целью окисление пробы проводят в термостатированной ячейке при 60±0,2ºС. Волюмометрически, при оптимальной скорости перемешивания определяют объем поглощенного кислорода во времени.

В указанных условиях исследована кинетика окисления водно-липид-ного субстрата в присутствии CuCl2, FeCl2, FeCl3, CoCl2, NiCl2 в зависимости от концентрации. Показано, что наиболее активным катализатором является хлорид меди, а активность остальных солей падает в ряду: Cu2+ > Fe2+ > Fe3+ > Co2+ > Ni2+.

В зависимости от концентрации катионов скорость процесса окисления этилолеата меняется экстремально. Для большинства катионов наибольшая скорость достигается при концентрациях (1-3)·10-3 моль/л. Особенно высокие скорости процесса в этой области концентраций достигаются в присутствии катионов меди. В сравнении с Fe2+ эта скорость увеличивается в 2 раза, а по сравнению с другими катионами - многократно. В дальнейших исследованиях в качестве катализатора выбраны катионы меди в концентрации (1-3)·10-3 моль/л.

Поскольку катионы металлов присутствуют в клетке в виде КС, чаще всего с остатками аминокислот в виде лигандов, то для разработки биоадекватного способа тестирования средств антиоксидантотерапии изучена кинетика окисления водно-липидного субстрата в присутствии КС катионов меди с α-аминокислотами. Предварительно для некоторых аминокислот изучен состав КС, константы устойчивости. Эти результаты совпадают с известными литературными данными [4], согласно которым большинство α-аминокислот образуют хелатные КС состава: «катион меди - аминокислота» 1 : 2 и логарифмами констант устойчивости равными 6 - 7. Показано, что оптимальное комплексообразование происходит в интервале рН 8 - 11, который соответствует боратному буферному раствору.

Далее исследована кинетика окисления водно-липидного субстрата при оптимальном рН в присутствии КС меди с каждой из аминокислот: α-аланин, валин, треонин, лизин, фенилаланин, лейцин, серин, гистидин. С этой целью пробу этилолеата смешивают с водными растворами эмульгатора и КС. Раствор КС готовят смешиванием водных растворов хлорида меди (II), аминокислоты и доводят буферным раствором до необходимой концентрации компонентов в пробе субстрата. При этом концентрация катионов меди составляет 2·10-3 моль/л, а аминокислоты - 1·10-2 моль/л. Предусмотрен избыток аминокислоты, который гарантирует устойчивость комплекса в субстрате. В этих условиях волюмометрически исследуют кинетику окисления водно-липидного субстрата в зависимости от природы аминокислоты и сравнивают результаты с контрольной пробой, состав которой описан выше. В результате показано отсутствие активности у треонина и лизина, слабая ингибирующая активность у гистидина и серина, более сильная ингибирующая активность у лейцина и фенилаланина. Координационные соединения α-аланина и валина проявляют сильный каталитический эффект.

На основании этих результатов разрабатывается биоадекватный метод тестирования средств антиоксидантотерапии с участием координационного соединения меди и α-аланина.

Также более подробно исследуется кинетика окисления водно-липид-ного субстрата в присутствии КС фенилаланина и лейцина с целью их использования в качестве средств антиоксидантотерапии.

СПИСОК ЛИТЕРАТУРЫ

  1. Зенков Н.К. Активированные кислородные метаболиты в биологических системах / Н.К. Зенков, Е.Б. Меньшикова // Усп. совр. биол. - 1993. - Т. 113. - № 3. - С. 286-297.
  2. Денисов Е.Т. Ингибирование цепных реакций / Е.Т. Денисов, Н.М. Эмануэль, В.В. Азатян. - Черноголовка: ИХФ РАН, 1997. - 370 с.
  3. Касаикина О.Т. Ингибирующая активность природных фенольных антиоксидантов в процессах окисления липидных субстратов / О.Т. Касаикина, В.Д. Кортенска, Э.М. Маринова, И.Ф. Русина, Н.В. Янишлиева // Известия РАН. Сер. хим. - 1997. - № 6. - С. 1119-1122.
  4. Яцимирский К.Б. Константы устойчивости комплексов металлов с биолигандами: Справочник / К.Б. Яцимирский, Е.Е. Крисс, В.Л. Гвяздовская - Киев: Наук. Думка, 1979. - 228 с.