Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

Исследование возможности образования наноструктур в поле лазерного излучения является в настоящее время одним из наиболее активно развивающихся направлений лазерной физики [1-4]. Развитие данной отрасли связано с тем, что свойства образующихся наноструктур существенно зависят от параметров лазерного излучения (длина волны, длительность импульса, форма пучка), разработанные в последнее время лазерные системы позволяют охватить большой диапазон данных параметров, что позволяет рассчитывать на генерацию наноструктур с заданными свойствами.

В данной работе образец подвергался воздействию излучения лазера на YAG:Nd3+ с длиной волны λ= 1.06 мкм, работающего в импульсно периодическом режиме с частотой следования импульсов f =150 Гц и длительностью импульса f мс, размер лазерного пятна на образце изменялся от 100 до 400 мкм. Средняя мощность излучения варьировалась в пределах 20 ÷ 200 Вт, при этом обеспечивалась плотность мощности излучения на поверхности образца до 107 Вт/см2. Длительность времени воздействия t составляла от 1 до 10 секунд.

Свойства образцов после воздействия исследовались при помощи зондового и электронного микроскопов.

До временив воздействия менее 3с, признаков плавления материала не наблюдалось, при увеличении времени воздействия t > 3с наблюдалось появление типичных зон, то есть при сканировании явным образом можно определить качественное изменение рельефа поверхности образца (см. рис.1), отслеживалось изменение радиального размера наблюдаемой области в целом, глубины центральной зоны каверны, изменение высот рельефа в переходных областях, а также образование множества разломов в центральной зоне.

p 

Рис. 1. Изображение каверны на поверхности стеклоуглерода с оптическим увеличением 28, P=76 Вт, t=5c

В зоне 1, наблюдается переплавленный углерод, внутри области перепады высот достаточно велики. В зонах 2 и 3 (см. рис. 2а) наблюдаются почти регулярные квазидоменные структуры. Из-за высокой повторяемости структур их изображение напоминает образование нанозерен на поверхности материалов, обрабатываемых при высоких давлениях и температурах [1, 3]. Отличие вида границ «доменов», позволяет определить, что они сформировались под действием различных процессов. Образование в области 3 ярко выраженных правильных многоугольников (в данном случае наблюдались пяти- и шестиугольники), позволяет говорить о кристаллизации тонкого слоя однородной жидкости на аморфной поверхности[3, 4]. Разрушение правильных границ в области 2, возможно, является влиянием температурного фактора [3].

На границе каверны, область 4, наблюдается образование ярко выраженных кольцевых структур (рис. 2б). Между кольцевыми выпуклостями поверхность сильно неоднородна, фиксируются множественные «складки» и образование наношероховатости (рис. 2в).

В областях 5,6,7 были обнаружены образования «нанопиков», при этом на поверхности образцов удаётся выделить «переходную область». Ее отличительной особенностью является возможность обнаружения исходного рельефа образца под «новообразованиями» (см. рис. 2г). Данная область имеет хорошо прослеживаемые границы, её размер зависит от мощности и длительности воздействия лазерного излучения.

Природа возникновения такой зоны по всей видимости связана с процессом горячих паров материала, покидающих область воздействия. Можно утверждать, что твердофазное разрушение поверхности под действием возникающих термических напряжений в данном случае не является доминирующим механизмом, поскольку сохраняется первоначальный рельеф.

p 

Рис. 2. АСМ и РЭМ изображения поверхности образца в различных зонах: а) граница каверны, внутренняя область; б, в) граница каверны, внешний край; г) область осаждения паров

СПИСОК ЛИТЕРАТУРЫ:

  1. Наноструктурнные материалы: учеб. пособие для студ. ВУЗов / Р.А. Андриевский, А.В. Рагуля. - М.: Издательский центр «Академия», 2005.-192 с.
  2. Лозовик Ю.В., Попов А.М. Образование и рост углеродных наноструктур - фуллеренов, наночастиц, нанотрубок и конусов // УФН, т. 167 (7), с. 151, 1997.
  3. Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. - М.: КомКнига, 2006. - 592 с.
  4. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. - М.: ФИЗМАТЛИТ, 2005. - 416 с.