Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

При проведении лечебных мероприятий, особенно в онкологии, пациент нередко подвергается комбинированному воздействию микроволн и ионизирующего излучения, в связи с этим существует необходимость экспериментального изучения возможных различий в степени выраженности морфофункциональных изменений скелетной мускулатуры различных участков при воздействии указанных факторов, в частности, с предшествующим применением двигательной нагрузки, что и обусловило проведение нашего исследования.

Исследование проведено на 68 половозрелых морских свинках самцах, массой 400-450 гр., из них в эксперименте использовано 43, а 25 служили в качестве контроля. Животные подвергались действию однократного общего микроволнового излучения (длина волны - 12,6 см, частота - 2375 МГц, плотность потока мощности - 60 мВт/см2, экспозиция 10 мин.). В качестве источника излучения использован терапевтический аппарат «ЛУЧ-58». Затем через 24 часа животные подвергались воздействию однократного общего рентгеновского излучения (доза-5 Гр, 0,64 Гр/мин., фильтр - 0,5 мм Си, напряжение - 180 кВ, сила тока - 10 мА, фокусное расстояние - 40 см.). В качестве источника излучения был использован рентгеновский терапевтический аппарат «РУМ-17». Микроволновому излучению предшествовало применение пробы с двигательной активностью (ДА) (бег в колесе в течение 20 мин.). Контролем служили интактные животные и животные, подвергавшиеся изолированному воздействию ДА. Перед проведением эксперимента морские свинки с целью исключения стрессового фактора 3-5 раз подвергались «ложному» воздействию с включенной аппаратурой, но отсутствием самого излучения. Выведение животных из эксперимента и забор материала производился сразу, через 6 часов, на 1, 5, 10, 25 и 60-е сутки после окончания воздействия. Фрагменты поперечнополосатой мышечной ткани были взяты из различных участков (передние конечности, спина, задние конечности). Для электронной микроскопии участки скелетной мышечной ткани фиксировали в 2,5% глютаральдегиде на 0,2 М кокадилатном буфере (рН-7,2), постфиксировали в 1% растворе осмиевой кислоты. Все объекты заливали в аралдит. Изготовление срезов производилось на ультратоме LKB-III (Швеция). Полутонкие срезы окрашивали толуидиновым синим, ультратонкие - контрастировали уранилацетатом и цитратом свинца, просматривали и фотографировали в электронном микроскопе JEM-100 CX-II (Япония). При электронной микроскопии подсчитывалось количество реактивно и деструктивно измененных саркомеров скелетной мышечной ткани. Полученные данные статистически обрабатывались с использованием критерия Стьюдента.

Сразу после окончания комбининрованного воздействия микроволн и рентгеновского излучения, с предшествующим применением ДА, в поперечнополосатой мышечной ткани всех участков локализации отмечается повышение числа как реактивно, так и деструктивно измененных саркомеров, превышающих исходное в передних конечностях в 3,58 и 1,29 раза, спине - в 2,49 и 1,2 раза, задних конечностях - в 3,44 и 1,24 раза, соответственно (р<0,05). Через 6 часов после окончания воздействия, количество реактивно и деструктивно измененных саркомеров превышает исходное в скелетной мышечной ткани передних конечностей - в 3,65 и 1,29 раза, спины - в 2,52 и 1,24 раза, задних конечностей - в 3,37 и 1,28 раза, соответственно (р<0,05). На 1-е сутки после комбинированного воздействия микроволн и рентгеновского излучения, с предшествующим применением ДА, сохраняется тенденция к нарастанию числа реактивно и деструктивно измененных саркомеров, превышающих исходное в поперечнополосатой мышечной ткани передних конечностей - в 3,98 и 1,35 раза, спины - 2,54 и 1,25 раза, задних конечностей - в 3,79 и 1,34 раза, соответственно (р<0,05). Дальнейшее повышение числа саркомеров с реактивными и деструктивными изменениями отмечается в поперечнополосатой мышечной ткани всех участков локализации на 5-е сутки после окончания воздействия микроволн и Х-лучей, с предшествующим применением двигательной нагрузки, так число реактивно и деструктивно измененных саркомеров превышает исходное в поперечнополосатой мышечной ткани передних конечностей в 4,33 и 1,53 раза, спины - в 2,9 и 1,38 раза, задних конечностей - в 4,18 и 1,49 раза, соответственно (р<0,05). На 10-е сутки, по сравнению с 5-ми сутками, отмечается дальнейшее повышение количества саркомеров с реактивными и деструктивными изменениями, достигающих максимальных значений за весь период эксперимента, превышая исходные показатели в скелетной мышечной ткани всех участков локализации: передних конечностей - в 4,98 и 1,6 раза, спины - в 3,77 и 1,48 раза, задних конечностей - в 4,74 и 1,58 раза, соответственно (р<0,05). Снижение количества саркомеров с реактивными и деструктивными изменениями в скелетной мышечной ткани отмечается на 25-е сутки, превышая исходное в передних конечностях - в 3,06 и 1,2 раза, спины - в 2,42 и 1,19 раза, задних конечностей - в 3,0 и 1,35 раза, соответственно (р<0,05). Наиболее выраженное снижение числа саркомеров с указанными изменениями отмечается на 60-е сутки после окончания комбинированного воздействия микроволн и рентгеновского излучения, с предшествующим применением ДА, вместе с тем не достигая исходных показателей в поперечнополосатой мышечной ткани всех участков локализации. Как и в предыдущие сроки наблюдений, на 60-е сутки наблюдается следующая закономерность - наименьшее число реактивно и деструктивно измененных саркомеров отмечается в скелетной мышечной ткани спины, где оно превышает исходное в 1,1 раза (р<0,05) и 1,03 раза (р>0,05), в то время как в передних конечностях - в 1,32 и 1,15 раза, задних конечностей - в 1,11 и 1,11 раза (р<0,05), соответственно.

Таким образом при комбинированном воздействии микроволн термогенной интенсивности и рентгеновского излучения, с предшествующим применением двигательной активности, отмечена неравномерность степени изменений поперечной мышечной ткани различной локализации - меньшая степень выраженности изменений структурных единиц отмечена в скелетной мышечной ткани спины экспериментальных животных.

Работа представлена на заочную электронную конференцию «Современные наукоемкие технологии», 15-20 февраля 2006г. Поступила в редакцию 06.05.2006г.