Для определения потерь мощности в торцевых зазорах вытеснителя рассмотрим процесс течения пластической среды в торцевом кольцевом зазоре осевого шестеренного вытеснителя в цилиндрической системе координат: r, , z. Торцевой зазор ограничен, с одой стороны наружной торцевой поверхностью шестерни с радиусом Rш и с другой - внутренней поверхностью корпуса с радиусом Rк и цапфой с радиусом Rц.
Начало координат совместим с центром вращения шестерни, и ось z направим вдоль оси вращения (рисунок 1). Заметим, что величина торцевого зазора << Rш. Поэтому осевой и радиальной составляющими скорости можно пренебречь.
Окружную скорость определим в виде функции:
(1)
где r - текущий радиус, f (z) - неизвестная функция координаты z.
Рисунок 1. Схема шестеренного вытеснителя с осевым выходом формуемой среды
Реологическим уравнением состояния пластической среды будет трехпараметрическое уравнение, которое запишем в виде:
(2)
Вязкость выразим уравнением:
(3)
На основании приведенных допущений запишем дифференциальное уравнение движения пластической среды в торцевом зазоре шестеренного вытеснителя:
(4)
Перепишем (4) с учетом (3) в виде:
(5)
Введем новые обозначения:
(6)
Тогда:
(7)
Проинтегрируем (7), получим:
(8)
Можно записать, что
(9)
или
(10)
После интегрирования (10), получим:
(11)
Постоянные интегрирования C1 и C2 определим из граничных условий:
.
;
(12)
Подставив C1 и C2 в (11), получим:
(13)
Запишем (13) с учетом (11)
(14)
Уравнение (14) с граничными условиями (12) определяет закон распределения окружной скорости по торцевому зазору шестеренного вытеснителя при течении в нем сплошной среды с пластическими свойствами.
Определим момент Mт от вязкостного трения пластической среды в торцевом зазоре, как сумму момента M1 сопротивления сдвиговому течению и момента сопротивления M2 от действия в торцевом зазоре градиента давления .
(15)
После интегрирования (15) и соответствующих преобразований запишем выражение момента сопротивления для всех четырех торцевых зазоров шестеренного вытеснителя в виде:
(16)
где , k и n - предельное напряжение сдвига, коэффициент консистенции и индекс течения объекта формования;
Rш и Rц - радиусы выступов зубьев и цапфы шестеренного вытеснителя;
- угловая скорость нагнетающих шестерен;
- торцевой зазор;
Мощность Nт, потребляемая вязким сопротивлением, при течении пластической среды в торцевом зазоре рассчитывают по формуле:
(17)
Для определения мощности Np, необходимой для преодоления вязкого трения в радиальном зазоре шестеренного вытеснителя, также воспользуемся цилиндрической системой координат r, j, z.
Радиальный зазор образован между корпусом вытеснителя радиусом Rк и поверхностью головок зубьев вытесняющих шестерен радиусом Rш (рисунок 1).
Ось z направим вдоль оси шестерни. Считаем, что течение в радиальном зазоре происходит со скоростью , так как значительно меньше Rш и осевая Uz и радиальная Ur компоненты скорости незначительны. Заметим также, что перепад давления по длине зуба шестерни тоже несущественен.
Запишем дифференциальное уравнение течения сплошной среды с пластическими свойствами в радиальном зазоре шестеренного вытеснителя в виде:
(18)
где
Решение уравнения (18) найдем в виде:
(19)
Для определения коэффициентов A и B составим систему уравнений:
(20)
для которой граничные условия имеют вид:
(21)
Можно записать, что:
(22)
Тогда
(23)
Подставим выражение A из (23) в (22) получим:
(24)
Перепишем (29) с учетом (23) и (24) - получим выражение скорости в радиальном зазоре:
(25)
Запишем выражение силы вязкого трения, действующей на участке, равном длине головки одного зуба нагнетающей шестерни.
(26)
Для вязкопластичного пищевого материала с нелинейной вязкостью запишем реологическое уравнение состояния в виде:
(27)
Тогда момент сил вязкого трения, действующий в радиальных зазорах двух шестерен будет:
(28)
где - коэффициент, учитывающий количество зубьев, находящихся в постоянном контакте с корпусом.
Мощность, необходимая для преодоления сил вязкого сопротивления в радиальном зазоре, будет:
(29)
Определим мощность, потребляемую на срез формуемой пластической среды при вытеснении его через загрузочные окна в цилиндрических стенках камер вытеснения:
(30)
Для расчета момента среза найдем площадь среза. При обращенном движении окно среза совершает полный оборот вокруг оси вращения вытесняющей шестерни и описывает площадь равную:
(31)
Для двух нагнетающих шестерен:
(32)
Введем коэффициент, учитывающий реальную площадь среза в зависимости от геометрических размеров шестеренного вытеснителя:
(33)
Окончательно площадь среза можно определить по формуле:
(34)
Теперь запишем выражение для определения момента среза:
(35)
При уменьшении коэффициента на поверхности камеры вытеснения образуется радиальный зазор , в котором момент вязкого трения можно определить по аналогии с (28). Для двух камер момент Mкв равен:
(36)
Мощность вязкого трения в радиальных зазорах формующих камер:
(37)
Общая мощность:
Nо = Nт + Np + Nкв + Nс +, (38)
где Nхх - мощность холостого хода.
Формула (38) позволяет подобрать привод шестеренного вытеснителя с учетом реологических характеристик объекта вытеснения.
Разработку конструкций элементов осевого шестеренного вытеснителя проводили методом твердотельного моделирования.
Шестеренный вытеснитель построен по модульному принципу. Все модули интегрированы.
На рисунке 2 представлена схема сборки осевого шестеренного вытеснителя.
Рисунок 2. Схема сборки осевого шестеренного вытеснителя
На рисунке 3 представлен разработанный вытеснитель с автоматизированной системой сбора экспериментальных данных.
Рисунок 3. Общий вид осевого шестеренного вытеснителя с автоматизированной системой сбора данных от датчиков давления, температуры и положения
Автоматизированная система сбора данных позволяет контролировать технологические процессы обработки пластических сред давлением в сквозных каналах в режиме реального времени. При этом информация с датчиков передается в память компьютера, что позволяет создавать банки данных.
СПИСОК ЛИТЕРАТУРЫ
- Мачихин Ю.А., Берман Г.К., Клаповский Ю.В. Формование пищевых масс. - М.: «Колос», 1992. - 272 с.
- Корячкин В.П. Новое в технике и технологии производства мучных кондитерских изделий. М. ЦНИИТЭИ хлебпродинформ, 1997. - 38 с.
- Корячкин В.П. Установка для обработки пищевых сред давлением //Индустрия образования: Сборник статей. Выпуск 3. - М: МГИУ, 2002. - С. 105 - 110.