Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

При решении многих практических задач цифровой обработки сигналов (ЦОС) необходимо осуществлять ортогональные преобразования над входной последовательностью дискретных отсчетов. Такие преобразования, как правило, определены над полем комплексных чисел и называются дискретным преобразованием Фурье (ДПФ), которое определяется выражениями:

f ;           (1)

f,   (2)

где f- поворачивающий коэффициент; x(n) - количество отсчетов, f, f.

Известно, что реализация прямого и обратного ДПФ предопределяет значительные погрешности при вычислении значений спектральных коэффициентов в поле комплексных чисел. Это, прежде всего, обусловлено тем, что поворачивающие коэффициенты f представляют собой иррациональные числа, а это при значительных значениях N приводит к существенной аддитивной арифметической погрешности. Поэтому для уменьшения среднеквадратической погрешности необходимо определить алгоритм ортогонального преобразования входного вектора x(n), в котором бы не использовались операции поля комплексных чисел.

С этой точки зрения наиболее привлекательными являются преобразования, определенные над расширенным полем Галуа f, где p  - простое, а f - положительное целое число. Известно [1], что данное поле содержит f ненулевых элемента, которые образуют циклическую мультипликативную группу. Следовательно, в этой группе должен существовать хотя бы один элемент d, который являлся бы делителем. Если f представляет собой простое число, то значение f.

Пусть β является элементом порядка k в мультипликативной группе ненулевых элементов f. Тогда выражение (1) можно преобразовать к виду

f, f.  (3)

Выражение (3) описывает преобразование входной последовательности отсчетов x(n), являющихся элементами расширенного поля Галуа f в последовательность «частотных» составляющих X(k), определенных над этим же полем.

Преобразование обратное (3), то есть эквивалентное множество уравнений, позволяющих определить входной вектор x(n) через совокупность спектральных составляющих X(k), определяется выражением

f, f, (4)

где d* - целое число, удовлетворяющее условию

f.                    (5)

Анализ выражений (3) и (4) показывает, что полученное преобразование аналогично ДПФ комплексной области и действует в пространстве циклической группы порядка d, определенной полем f. Так как f и x(n) представляют собой целочисленные элементы расширенного поля Галуа, то при реализации выражений (3) и (4) будут полностью отсутствовать шумы округления.

В подавляющем большинстве приложений задача ЦОС сводится к нахождению значений ортогонального преобразования конечной реализации сигнала для большого числа точек, что предопределяет повышенные требования к разрядности вычислительного устройства.

Рассмотрим возможность выполнения обобщенного ДПФ в расширенных полях Галуа с использованием конечных полиномиальных колец, полученных с помощью неприводимых полиномов.

Пусть имеем конечное кольцо полиномов P(z), с коэффициентами в виде элементов поля GF(p), определяющего точность вычисления ортогональных преобразований сигналов. Положим, что данное кольцо разлагается в виде f, где Pl(z) - локальное кольцо полиномов, образованных неприводимым полиномом pl(z) над полем GF(p); l=1,  ...,k.

Тогда справедлива следующая теорема.

Теорема: Пусть  P(z) - конечное кольцо полиномов с коэффициентами поля GF(p) представляет собой прямую сумму локальных колец полиномов

f.   (6)

Тогда в данной системе существует ортогональное преобразование, представляющее собой обобщенное ДПФ, если выполняются следующие условия:

1. f - первообразный элемент порядка d для локального кольца Pl(z), где l=1,  ...,m.

2. d имеет мультипликативный обратный элемент d*.

Доказательство: Ортогональное преобразование является обобщенным ДПФ для кольца вычетов P(z) если существуют преобразования вида

f,         (7)

где f, l=1,2,...,m; k=0,1,...d-1, над конечным кольцом Pl(z).

Полученная циклическая группа имеет порядок d. Поэтому дискретное преобразование Фурье над Pl(z) можно обобщить над кольцом P(z), если конечное кольцо Pl(z) содержит корень  d-ой степени из единицы и d имеет мультипликативный обратный элемент d*, такой что справедливо

f.                     (8)

Доказательство закончено.

Основным преимуществом доказанной теоремы является то, что существует возможность организации ортогональных преобразований сигналов на основе обобщенного ДПФ в расширенных полях Галуа при различных значениях разрядности сетки, задаваемой значением конечного кольца P(z). При этом вычисления организуются параллельно, независимо друг от друга, что значительно повышает быстродействие арифметических устройств ЦОС.

Проведенные исследования показали, что применение ортогональных преобразований в f на основе обобщенного ДПФ позволило повысить производительность вычислительного устройства более чем в 1,5 раза. Таким образом, полученные результаты имеют важное практическое значение, так как позволяют поднять аппаратные средства для ЦОС на качественно более высокую ступень.

СПИСОК ЛИТЕРАТУРЫ:

  1. Абстрактные алгебраические системы и цифровая обработка сигналов /Вариченко Л.В., Лабунец В.Г., Раков М.А. - Киев: Наук. думка, 1986.-248 с.
  2. Калмыков И.А. Математические модели нейросетевых отказоустойчивых вычислительных средств, функционирующих в полиномиальной системе классов вычетов /Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2005. - 276 с.
  3. Элементы применения компьютерной математики и нейроинформатики /Н.И. Червяков, И.А. Калмыков И.А., В.А. Галкина, Ю.О. Щелкунова, А.А. Шилов; Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2003. - 216 с.