Сложные оксиды кобальта MCoO2, содержащие щелочные элементы, обладают необычными физическими свойствами (сверхпроводимость, фазовые переходы полупроводник-металл, термоэлектричество и др.). Особый интерес в этом семействе кристаллов представляет LiCoO2, который используется в качестве катодного материала в химических источниках тока. В литературе имеются сведения о трех модификациях LiCoO2: низкотемпературная форма образуется при 400°С и имеет шпинелеподобную структуру (пространственная группа Fd3m), высокотемпературная форма образуется при температуре 800°С и имеет слоевую структуру типа a-NaFeO2 (пространственная группа ) и неустойчивая фаза со структурой поваренной соли. В зависимости от технологии синтеза, температуры, режимов электрохимической эксплуатации изменяется состав и структура фаз этого вещества.
Структуры всех фаз LiCoO2 можно рассмотреть как результат упорядочения атомов в прафазе со структурой поваренной соли (пространственная группа Fm3m): в позиции 4(а) беспорядочно распределены атомы лития и кобальта, а позиции 4(в) занимает кислород. Симметрийный анализ известного экспериментального материала позволил установить, что возможными критическими неприводимыми представлениями (НП), индуцирующими все фазовые превращения, являются представления k9(τ1) и k9(τ4) группы Fm3m. Эти представления связаны внешним автоморфизмом; они генерируют 11 пар низкосимметричных фаз с попарно одинаковыми пространственными группами.
Термодинамический потенциал феноменологической теории Ф, инвариантный относительно группы симметрии прафазы, заданной НП k9(τ1) и k9(τ4) пространственной группы Fm3m,
представлен в виде ряда по четырем инвариантам, составляющим целый рациональный базис инвариантов (неприводимые представления четырехмерны)
В работе построены возможные фазовые диаграммы, проведено моделирование структурных механизмов образования низкосимметричных фаз, рассчитаны структуры возможных модификаций LiCoO2.