Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

Обеспечение долговечности бетона в условиях агрессивной эксплуатационной среды - одно из наиболее актуальных и перспективных направлений в развитии современной строительной науки и практики во всем мире. Снижение долговечности изделий, конструкций и материалов из бетона, сопровождается значительными экономическими потерями. Размер общего ущерба от коррозии в строительстве достигает до 4% национального валового дохода и продолжает возрастать. Значительного сокращения затрат можно достичь правильным назначением защитных мероприятий на стадии проектирования, ремонтно-восстановительных и антикоррозионных работ. Повышение коррозионной стойкости бетона и железобетона обычно достигается применением специальных цементов, добавок, увеличением плотности бетона. В современном строительстве все большее значение приобретают композиции на основе водных дисперсий полимеров. Это обусловлено многочисленными достоинствами таких композиций - экономичностью, высокой технологичностью, отсутствием токсичности, пожаро и взрывобезопасностью. Именно поэтому основой научно-исследовательских работ стали исследования по использованию в промышленности экологически безопасных технологий, обеспечивающих долговечность изделий из бетона в агрессивных средах. Известно, что химическая стойкость модифицированных растворов и бетонов зависит от природы полимеров, полимерцементного отношения и свойств агрессивных химических веществ. С точки зрения повышения коррозионной стойкости цементных систем наибольший интерес представляет изучение влияния добавки водной дисперсии полимера на химическую стойкость образующегося материала в различных агрессивных средах. Проведенные эксперименты показали, что удовлетворительной агрегативной стойкостью в цементных растворах обладает водная дисперсия ВДВХМк-65Е-ВДК которая и использовалась в дальнейших исследованиях.

Влияние полимерцементного соотношения на химическую стойкость определялось на цементных растворах при варьировании П/Ц от 0,01 до 0,2 и водоцементном отношении 0,25. Концентрацию агрессивной среды во время испытания поддерживали с погрешностью до ±1%. Для исключения влияния накапливающихся продуктов разложения агрессивная среда (соляная кислота 5%-ной концентрации) в процессе испытаний  заменялась один раз в течение 2 суток. Обработка полученных значений с помощью корреляционного анализа на ЭВМ позволила установить, что зависимость потери массы образцов при всех значениях полимерцементного отношения от времени воздействия агрессивной среды подчиняется линейной зависимости с достоверностью не менее 0,95 как при механическом удалении продуктов коррозии с поверхности образцов так и без их удаления.

С целью определения оптимального содержания полимера, при котором обеспечивается максимальная химическая стойкость композитного материала, исследована зависимость потери массы испытуемых образцов от полимерцементного отношения в различные сроки испытаний.

Полученные результаты показали, что оптимальное полимерцементное отношение для исследованного латекса находится в области 0,08 - 0,10.

Обычно модифицированные латексом раствор и бетон обеспечивают более высокую подвижность по сравнению с традиционными составами. Это главным образом объясняется улучшенной консистенцией (вследствие эффекта шарикоподшипника) полимерных частиц, вовлеченного воздуха и диспергирующим эффектом поверхностно активных веществ в латексах.

Результаты проведенных исследований показали, что подвижность определяемая по расплыву конуса (РК, мм) на встряхивающем столике пластичных полимерцементных растворов состава 1:3 при П/Ц=0-0,2 растет с увеличением В/Ц.

Введение латекса  ВДВХМк-65Е-ВДК позволяет снизить водоцементное отношение на 30-45%.

Водоудерживающая способность растворных смесей - характеристика способности растворных смесей удерживать воду в слое смеси при ее контакте с пористым влагопоглощающим основанием, является важной характеристикой сохранять удобоукладываемость. В соответствии с ГОСТ 28013, водоудерживающая способность растворных смесей должна быть не менее 90%.

Модифицированные растворы и бетоны обладают значительно большей водоудерживающей способностью по сравнению с обычным цементным раствором и бетоном. Водоудерживающая способность зависит от полимерцементного отношения. По нашему мнению, это объясняется гидрофильностью и коллоидными свойствами самих полимеров и замедлением испарения воды из-за изолирующего действия образующихся непроницаемых полимерных пленок. Соответственно достаточное количество воды, требующееся для гидратации цемента, задерживается в растворе и бетоне, поэтому для большинства модифицированных систем более предпочтительно сухое выдерживание.

Зависимость модифицированных растворов состава 1:3 от полимерцементного отношения свидетельствует, что водоудерживающая способность в основном возрастает с увеличением полимерцементного отношения и становится близкой к постоянной при полимерцементном отношении от 0,05 до 0,1.

Обычно схватывание модифицированных раствора и бетона в некоторой степени замедленно по сравнению с обычным цементным раствором и бетоном. Это замедление зависит от типа полимера и полимерцементного отношения. Схватывание замедляется при увеличении полимерцементного отношения. В растворе, модифицированном латексом ВДВХМК-65Е-ВДК, начало и конец схватывания замедляется не более чем на 0,5 -1,0 часа при варьировании П/Ц от 0,05 до 0,15. Схватывание замедляется из-за наличия поверхностно-активных веществ, содержащихся в латексе и замедляющих гидратацию цемента. Адсорбируясь на поверхности цементных зерен, латекс замедляет процесс гидратации цемента.

Полученные зависимости предела прочности при сжатии и изгибе от времени твердения равноподвижных модифицированных растворов состава 1:3 при различном полимерцементном отношении свидетельствуют о том, что влияние замедления гидратации цемента на прочностные характеристики проявляются в возрасте до 3 суток. В дальнейшем, прочностные характеристики модифицированных растворов (при П/Ц > 0,05) начинают превышать прочностные характеристики немодифицированного раствора.

Анализируя кинетику твердения модифицированного раствора, можно предположить, что для обеспечения начальной гидратации цемента необходимо обеспечить влажные условия среды в течение 2 суток. Дальнейшее твердение в воздушно-сухих условиях позволит обеспечить твердение латекса и продолжить твердение цемента под образовавшейся полимерной пленкой, препятствующей испарению воды.

Для большинства модифицированных бетонов и растворов значения деформации, растяжимости и упругости выше, чем у обычных цементных растворов и бетонов. Для исследования деформативных свойств использовались стандартные методы, установленные для растворов и бетонов. Максимальная деформация возрастает с увеличением полимерцементного отношения. В процессе исследований было установлено, что усадка полимерцементных бетонов, модифицированных латексом ВДВХМК-65Е-ВДК, при П/Ц=0,5-0,1 протекает наиболее интенсивно в первые 7 суток твердения и приблизительно на 10% ниже, чем усадка немодифицированного бетона. Уменьшение усадки по сравнению с обычным цементным раствором происходит за счет пластифицирующего эффекта добавки  ВДВХМК-65Е-ВДК и снижения В/Ц. 

При П/Ц=0,2 модифицированные бетоны имеют большую усадку по сравнению с немодифицированными. Вероятнее всего, это связано с испарением большего количества воды, абсорбированной в полимерной фазе и усадкой самого полимера.

Трещиностойкость модифицированных бетонов определялась по коэффициенту интенсивности напряжений и энергетическому критерию разрушения. Из полученных данных можно сделать вывод, что вязкость разрушения возрастает с ростом П/Ц отношения, то есть полимерная составляющая является фактором, тормозящим рост трещин.

Чтобы наиболее полно количественно оценить деформативную способность модифицированного  ВДВХМК-65Е-ВДК бетона воспользовались мерой ползучести (Пt ). Мера ползучести представляет собой относительную деформацию ползучести под действием единицы силы. Проведенные исследования показали, что мера ползучести модифицированного бетона при П/Ц=0,5 - 0,15 в достаточно широком диапазоне относительно напряженного состояния при интенсивности нагружения δ=R/2 меньше, чем у обычного. Снижение ползучести обусловлено его повышенной плотностью и пониженными напряжениями от усадки бетона, которые создают дополнительные напряжения, суммирующиеся с внешней нагрузкой.

Определение атмосферостойкости модифицированного латексом  ВДВХМк-65Е-ВДК бетона проводилось на установках «Ксенотест» и «Фейтрон», по методикам разработанным лабораторией строительных материалов МНИИТЭП. Установка «Ксенотест» имитирует воздействие следующих атмосферных факторов: солнечное облучение и дождевание 6 часов и состоит из следующих этапов:

  • облучение ксеноновыми лампами - 5 часов;
  • дождевание - 1 час

Результаты испытаний обрабатываются  следующим образом. Известно, что суммарная интенсивность ксеноновых ламп составляет 200 Вт/м2 . Зная время, в течение которого образцы подверглись облучению, можно подсчитать количество ультрафиолетовой радиации, поступившей на образец в период проведения испытаний. Для этого суммарную интенсивность ксеноновых ламп нужно умножить на время, в течение которого проводилось облучение. Известно также, что количество ультрафиолетовой радиации при юго-западном ориентировании в период с марта по сентябрь составляет 41540 Вт/м2 , можно подсчитать какому количеству лет, соответствует время облучения образцов в «Ксенотесте». Для этого необходимо количество ультрафиолетовой радиации, поступившей на образец за время испытаний разделить на 41540 Вт/м2 и тогда мы получим время в годах, которое может быть приравнено к времени экспонирования в естественных условиях. Через каждые 10 циклов проводился осмотр образцов визуально и под световым микроскопом, а также взвешивание каждого образца. При проявлении трещин образцы испытываются на сжатие. Образцы после экспонирования сравниваются с контрольными образцами, которые в период проведения испытаний хранились в темном месте при комнатной температуре.

На установке «Фейтрон» (климатическая камера), позволяющей имитировать воздействие знакопеременных температурно-влажностных воздействий, определяется эксплуатационная  стойкость образцов из модифицированного латексом  ВДВХМк-65Е-ВДК бетонов (кубы с ребром 100 мм) при температуре от -10о С до +10о С. Испытания проводились непрерывно в течение нескольких месяцев (6 переходов через 00С в сутки). Определив количество переходов образцов через 00 С (потери образцов по массе не должны превышать более 5%) и зная, что количество переходов через 00 С в год в средней полосе России составляет от 60 до 100, подсчитывают время в годах, в течение которого материал может экспонироваться в натуральных условиях.

В результате комплексного воздействия на установке «Ксенотест», солнечной радиации и дождевания по режиму: 5 часов - ультрафиолетовое излучение; 1 час - дождевание общей продолжительностью327 суток, установлено, что стойкость образцов из модифицированного латексом  ВДВХМк-65Е-ВДК бетона к указанным видам воздействий значительно выше, чем у контрольных.

Обобщая результаты проведенных исследований можно сделать заключение, что модифицированные латексом растворы и бетоны являются долговечным строительным материалом, который целесообразно использовать при производстве изделий различного назначения.