Существующие методы прогнозирования электрических нагрузок формализуют расчеты на основе классических представлений электротехники и методах математической статистики. Расчет электрических нагрузок, опирающийся только на классический аппарат, не может обеспечить достаточную точность при прогнозировании процессов в сложных электротехнических системах.
Современное промышленное предприятие имеет в своем составе сложное электрическое хозяйство, которое можно характеризовать следующими цифрами: максимум нагрузки достигает десятков МВт; количество двигателей - тысячи штук; сотни силовых трансформаторов; тысячи низковольтных аппаратов, сотни счетчиков, численность электротехнического персонала - 100 - 200 человек. Значительную часть (до 70% нагрузки) составляют электроприемники напряжением ниже 1 кВ, подключаемые к цеховым трансформаторам 6 - 10/(0,4 - 0,23) кВ.
Это электрохозяйство является системой нового типа, где свойства электрической системы не вытекают из совокупности свойств ее отдельных элементов. Законы развития техники, включающей отдельные элементы, и живой природы, состоящей из отдельных особей, имеют много общего. Поэтому представляется возможным описывать объекты электрической системы на основе ценологических понятий. Подобные сложные системы рассматриваются в других направлениях науки как ценозы (биогеоценозы, техноценозы, бизнесценозы и т.д.). Тогда при изучении технических систем возможно ввести понятия из биологии: особь, вид, ценоз.
В 1877 г. при исследовании свойств отдельных особей и совокупностей живых организмов Клаус Фердинанд Мебиус ввел понятие «ценоз». Биоценоз - совокупность живых организмов, обитающих на определенном участке, где условия внешней среды определяют его видовой состав.
Термин «техноценоз» и ценологический подход к исследованию сложных технических систем предложены замечательным ученым Б.И. Кудриным. В его теории имеется четкая аналогия между развитием техники и живой природы. Он обосновал использование модели H-распределения для математического описания видового и рангового распределения.
Основу научных исследований Б.И.Кудрина, ведущихся с 1971 г. и концептуально завершённых в области электрики к 1976 г., а философии - к 1996 г., составил опыт проектирования и строительства крупных заводов и их хозяйств, цехов; отдельных комплексов, зданий, сооружений и сетей. Сами ценологические свойства цехов (предприятий) и городов стали проявляться в нашей стране в 50-е годы и были замечены Б.И.Кудриным в 70-е годы.
Исследование технических систем предполагает адекватный математический аппарат для выделенной целостности - технического ценоза и для каждого из фрагментов созданного человеком материального и идеального миров. Применительно к промышленным предприятиям, как правило, определяют связь между количеством видов продукции и электропотреблением.
Теория предполагает существование некоторого идеального распределения элементов ценоза, причем стабильность системы характеризуется значением рангового коэффициента, находящегося в пределах от 0,5 до 1,5. Эти данные были получены Б.И. Кудриным и его учениками эмпирически.
В работах В.И. Гнатюка предполагается, что оптимальным является такой техноценоз, который по своим функциональным показателям характеризуется максимальной энтропией и обеспечивает выполнение поставленных задач, т.е. идеальное выполнение своего функционального назначения .
Поясним существование идеальной технической системы с точки зрения гармонии. В технике существует понятие «Золотое сечение» - деление отрезка на две части, при котором длина отрезка так относится к большей части, как большая часть относится к меньшей. Это определение предложено Леонардо да Винчи в XV веке.
Будем считать, что гармония и идеальное распределение ценоза как системы, выполняющей свое функциональное назначение, подчиняются «Золотому сечению», а понятие «Золотое сечение» неразрывно связано с числами Фибоначчи.
В 1202 г. итальянским купцом и математиком из Пизы Леонардо Фибоначчи была написана «Книга об абаке», в которой помещена задача про кроликов. Решая эту задачу, Фибоначчи обнаружил последовательность чисел, где последующее число равно сумме двух предыдущих чисел: 1; 1; 2; 3; 5; 8; 13; 21; 34 и т.д. Отношение последующего члена ряда к предыдущему с ростом последовательности стремится к коэффициенту золотого сечения Ф = 1,618.
Если взять числовой ряд, состоящий из чисел с коэффициентом 1, 618 («Золотое сечение») 1,0; 0,62; 0,38; 0,24; 0,15; 0,09 и т.д. (что сильно напоминает шкалу мощностей трансформаторов), и аппроксимировать его, то получим гиперболическую кривую, которая описывается следующей формулой:
где Ф = 1,618 - золотая пропорция, r-ранг объекта.
С учетом опыта развития живой природы, можно предполагать, что формула отражает идеальное соотношение количества видов и численности каждого вида. Поэтому при определении основных показателей и количества установленного оборудования целесообразно использовать понятие «Золотое сечение» и числа Фибоначчи. Поскольку эти соотношения существуют в природе, то человек бессознательно создает техноценозы таким образом, что их оптимальная структура определяется этими постоянными.