Методика эксперимента заключалась в следующем. Реально измеренный спектр у основания разделяется на диапазоны по 5 - 10 нанометров. Поскольку отсутствуют дислокации, отсутствует расширение спектра, не будет и расширенных полос излучения каждого из активаторов, поскольку отсутствует основная причина их расширения - внутренние напряжения от дефектов. Не будет ни увеличенных, ни уменьшенных по величине квантов, так как в бездефектной решетке энергетические расстояния между стабильными и возмущенными уровнями активаторов повсеместно будут постоянными. По той же причине не будет наблюдаться изменение вероятности возбуждения и излучения активаторных центров, все они будут излучать с одной и той же вероятностью, равной 1. Поскольку в бездефектной решетке отсутствуют причины появления квантов света различной величины и причины изменения вероятностей возбуждения и излучения, интенсивность люминесценции в каждом из диапазонов будет одинаковой и равной максимальной интенсивности в каждой из составных частей разделенной экспериментальной полосы. В бездефектной решетке вместо расширенных максимумов будут наблюдаться только узкие линии излучения с шириной, примерно равной ширине каждого из диапазонов и высотой во столько раз большей высоты каждого из максимумов экспериментальной кривой, сколько диапазонов находится у основания каждого из них. В качестве независимого качественного подтверждения получения линейчатого спектра у бездефектного галофосфатного люминофора, можно указать на то, что у так называемых «редкоземельных» люминофоров, в которых редкоземельные активаторы европий, тербий и другие излучают не внешними валентными электронами, а внутренними, тоже наблюдается линейчатый спектр с чрезвычайно узкими (до 3-5 нанометров) полосами излучения. Оценку перспектив повышения эффективности люминофоров можно проводить в двух направлениях. По одному из них сугубо энергетический выигрыш оценивается просто как частное от деления площади линейчатого спектра на площадь реально измеренного спектра. Более близким к практическим задачам является направление по оценке повышения световой эффективности, (точнее - в повышении световой отдачи) широко применяющегося галофосфатного люминофора у которого наблюдаются два максимума, сурьмяный и марганцевый. Поэтому для оценки повышения световой эффективности этого люминофора и экспериментальную уширенную спектральную полосу и оба линейчатые максимума пересчитывались с учетом относительной спектральной световой эффективности излучения. За счет такого пересчета, оба максимума существенно уменьшаются по величине, а реально измеренный двуполостный максимум превратился в полосу с одни максимумом. Повторяя теперь деление площади под обоими пересчитанными линейчатыми максимами на площадь пересчитанного реального максимума, получаем величину 2,28,т.е. эффективность бездефектного люминофора может быть повышена в 2,28 раза от 85 лм/Вт до величины 193,8 лм/Вт, что примерно совпадает с оценками работы [6], по которой световая отдача люминесцентных ламп в перспективе может быть повышена до 145 лм/Вт. Для компактных материалов способ уменьшения плотности дислокаций реализуется посредством регулируемых отжигов. В случае порошков затруднения связаны с возможностью из взаимного спекания, после чего их вновь необходимо было бы размалывать.
СПИСОК ЛИТЕРАТУРЫ
- Матаре Г. Электроника дефектов в полупроводниках. М.: 1974.- 464 с.
- Риль Н. Люминесценция. Государственное издательство технико-теоретической литературы. 1946. - 184 с.
- Нилендер Р.А., Трошенский Д.П. Усовершенствование люминофоров для источников света. Известия АН СССР. Сер. физ. 1961.- Т 25.- № 3.- С.435-438.
- Мордюк В.С. Физические модели, структурные механизмы и методы замедления процесссов старения материалов в источниках света. Дисс. докт. техн. наук, Москва, 1995 - 487 с.
- Бонч- Бруевич В.Л., Гласко В.Б. К теории электронных состояний, связанных с дислокациями. Физика твердого тела.- Т.111.- Вып. 1.- С. 36 - 44.
- Kauer E., Schnedler E. Moglichkaiten und Grenzen der Lichterzeugung. Phus. Bl.-Vol.42.- №5. S. 128 - 133.