В настоящее время большую актуальность приобретают вопросы ведения горных работ на глубинах более 1000 м. Особого внимание требуют вопросы управления состоянием горного массива. Одним из возможных путей решения данных задач является ведение работ в восходящем порядке и применение комбинированных систем разработки, с разделением запасов горизонта на камеры I и II очереди. Камеры I очереди заполняют монолитной твердеющей закладкой, а камеры II очереди - сыпучей. Применение в качестве сыпучей закладки дробленых пустых пород и шлаков металлургических заводов позволит заметно снизить себестоимость закладочных работ и захоронить (или заскладировать) большое количество отходов горно-металлургического производства.
Основной целью исследований явилось расчеты размеров искусственных монолитных целиков в условиях сложного напряженного состояния при одновременном нагружении горным давление и активным давлением сыпучей породной закладки камер II очереди с изменением параметров системы разработки при восходящем порядке отработки залежи. Выбор оптимальных параметров камер I и II очереди производился по условию минимальной себестоимости закладочных работ.
В результате исследований было установлено, что действующие на целик силы горного давления пород висячего бока и активного давления сыпучей закладки нельзя рассматривать отдельно друг от друга, так как при решении данной задачи они взаимосвязаны. С одной стороны, искусственный целик является несущей конструкцией, разрушаемой горным давлением со стороны висячего бока. С другой стороны, он работает как подпорная стенка в виде балки, защемленный с двух сторон тем же самым горным давлением. Критический момент наступает, когда с одной стороны монолитного целика находится сыпучая закладка камеры, а с другой стороны отработанная, но еще не заложенная камера.
Применение теории Кулона для расчета активного давления сыпучего в подземных условиях требует корректировки. Во первых, по теории Кулона на подпорную стенку давит только вес сыпучего, находящийся в объеме призмы сползания. В подземных камерах, длина которых составляет десятками метров, может возникнуть ситуация, когда верхнее ребро призмы сползания будет больше длины камеры и в формулу Кулона будет необходимо внести поправки. Во вторых, по теории Кулона подпорная стенка имеет бесконечную длину, что не соответствует условиям камерных систем разработки. При подземной разработке ширина подпорной стенки ограничена мощностью рудного тела и сыпучая закладка оказывается «сжатой» между висячим и лежачим боком залежи, что уменьшает ее давление на подпорную стенку. В третьих, по теории Кулона подпорная стенка расположена вертикально к поверхности земли. В подземных условиях и подпорная стенка, и сыпучая закладка расположены под углом наклона рудного тела, что создает дополнительную силу трения между ней и лежачим боком, уменьшая величину активного давления.
При нисходящем порядке ведения работ искусственные целики испытывают давление призмы сползания, доходящей до поверхности, которая увеличивается с понижением горных работ. Из-за этого необходимо увеличивать размеры искусственных целиков и их прочность. При восходящем порядке ведения работ, когда вышележащие породы еще не нарушены горными работами, искусственные целики испытывают давление пород только в пределах свода давления. При переходе работ на следующий вышерасположенный этаж объем свода увеличится, однако его высота над рабочим горизонтом будет оставаться постоянной и меньшей, чем при нисходящем порядке, что приведет к уменьшению размеров искусственных целиков и прочность их закладки.
Применительно к условиям месторождения «Заполярное» Кольская ГМК были проведены расчеты параметров камер I и II очереди и необходимой прочности закладки камер I очереди. Оптимальными являются следующие параметры системы разработки (рис.): длина камеры I очереди - 8 м., длина камер второй очереди - 40 м., прочность твердеющей закладки камер первой очереди 3 МПа. Это позволяет снизить себестоимость закладочных работ за счет увеличения использования сыпучей закладки из отходов горно-металлургического производства. Данная методика применима при отработке в восходящем порядке крутопадающих рудных месторождений, залегающих на больших глубинах.