Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,791

Современное машиностроение на первый план выдвигает развитие финишных методов обработки, способных обеспечить с высокой производительностью достижение заданных требований качества деталей.

Расширение технологических возможностей финишных методов механообработки заключается в применении комбинированных методов электрообработки (КМЭ). Для этого объединяют в одной операции два технологических воздействия: одно с локальной формой диспергирования (высокие точностные возможности), а другое- с интегральной формой диспергирования. Эту функцию выполняет электрохимическая обработка.

В основе КМЭ лежит объединение носителей двух форм энергии: механической и электромагнитной  с различной плотностью энергии. Каждый конкретный метод представляет собой сложную систему, состоящую из подсистем: источники генерации энергии, инструментально-кинематической, рабочей среды и заготовки. Между подсистемами взаимодействуют энергетические потоки, изменяющие физико-химические свойства рабочей среды и приповерхностного слоя  обрабатываемой заготовки, и осуществляющие диспергирование материала.

Взаимодействие энергетических потоков между подсистемами приводит к возникновению множества нестационарных явлений возникающих в локальных зонах поверхности заготовки. В технологическом плане основными из них являются: депассивационные, термокинетические, термомеханические, механотермические, механохимические,  хемомеханические и фазовых превращений в рабочей среде межэлектродного пространства. Например депассивационное явление приводит к увеличению локальной скорости анодного растворения, хемомеханическое - изменяет механические свойства приповерхностного слоя и приводит к пластификации или к охрупчиванию, в зависимости от величины анодного потенциала и свойств рабочей среды. Каждое из этих явлений, в зависимости от плотности энергетических потоков исходных технологических воздействий и свойств подсистемы «рабочая среда- заготовка», оказывает влияние на локальную скорость диспергирования материала заготовки и изменение в ней парциальных долей исходных технологических воздействий.

КМЭ реализуются в различных технологических схемах обработки: электрохимического шлифования, электрохимического хонингования, электроэрозионно-электрохимической обработки, лазерно-электрохимической обработки и других схем. Взаимодействие подсистем  приводит к формированию пространственно- временной гетерогенности поверхности заготовки и рабочей среды. Это приводит к диспергированию материала заготовки с различной скоростью по обрабатываемой поверхности и лежит в основе повышения точности и качества обработки.

Управление свойствами поверхностного слоя осуществляется за счет действия термических и механических энергетических потоков в совокупности с анодным растворением обрабатываемой поверхности. Такое сочетание позволяет сформировать остаточные напряжения заданного знака и повышенную микротвердость приповерхностного слоя, влияющих на эксплуатационные характеристики деталей.

Для проектирования технологических операций  КМЭ предложен иерархический принцип, осуществляющийся по следующему алгоритму.

  1. Выбирают исходные технологические воздействия и задают схему технологической операции.        
  2. Задают группу нестационарных явлений, управление которыми позволяет получить заданные требования по качеству.
  3. Методом компьютерного моделирования определяют плотности энергетических потоков, способствующих максимальной реализации выбранных нестационарных явлений.
  4. Моделируют процесс обработки и определяют режимы и производительность обеспечивающие достижение заданных требований по качеству.

После изучения различных технологических схем выбирают наиболее рациональную и проводят технологические эксперименты. Такой алгоритм позволяет сократить сроки внедрения новых технологических операций.