Достоинства цифровых методов представления, обработки, передачи и хранения информации, бурное развитие элементной базы - все это способствует тому, что цифровые методы обработки и передачи информации стали основным направлением развития телекоммуникационных систем. Эффективность методов цифровой обработки сигналов (ЦОС), составляющих основу многих ИТ, полностью определяется математической моделью ЦОС.
Существующая в последние годы тенденция в цифровой вычислительной технике к распараллеливанию вычислений связана с непрерывным ростом требований к производительности вычислительных устройств ЦОС.
Однако предъявляемые жесткие временные ограничения и отсутствие высокопроизводительной нейросетевой базы ЦОС является основным сдерживающим фактором широкого внедрения методов цифрового преобразования сигналов в системах передачи речи со сжатием, статистическим уплотнением, пакетной коммутацией, IP-телефонии и других инфотелекоммуникационных системах.
При анализе сигналов и цифровых методах их обработки особое внимание привлекают ортогональные преобразования благодаря простоте вычисления координат разлагаемых функций в пространстве. Такие преобразования определены над полем комплексных чисел,
где - поворачивающий коэффициент;
x(n)- количество отсчетов, k=0,...,N-1, n=0,...,N-1.
Известно, что реализация прямого и обратного ДПФ предопределяет значительные погрешности при вычислении значений спектральных коэффициентов в поле комплексных чисел. С этой точки зрения наиболее привлекательными являются преобразования, определенные над расширенным полем Галуа GF(pv). Так как элементы поля представляют собой целочисленные элементы расширенного поля Галуа, то при реализации выражений (1) и (2 будут полностью отсутствовать шумы округления [1-3].
Рассмотрим возможность выполнения обобщенного ДПФ в расширенных полях Галуа с использованием конечных полиномиальных колец, полученных с помощью неприводимых полиномов.
Пусть имеем конечное кольцо полиномов P(z), с коэффициентами в виде элементов поля GF(p), определяющего точность вычисления ортогональных преобразований сигналов. Положим, что данное кольцо разлагается в виде P(z) = P1(z) + P2(z) +...+ Pk(z), где P1(z) - локальное кольцо полиномов, образованных неприводимым полиномом pl(z) над полем GF(p); l=1, ...,k. Тогда справедлива теорема.
Теорема: Пусть P(z) - конечное кольцо полиномов с коэффициентами поля GF(p) представляет собой прямую сумму локальных колец полиномов
P(z) = P1(z) + P2(z) +...+ Pm(z),
Тогда в данной системе существует ортогональное преобразование, представляющее собой обобщенное ДПФ, если выполняются следующие условия:
- β 1(z) - первообразный элемент порядка d для локального кольца p1(z), где l=1, ...,m.
- d имеет мультипликативный обратный элемент d*.
Доказательство: Ортогональное преобразование является обобщенным ДПФ для кольца вычетов P(z) если существуют преобразования вида
над конечным кольцом p 1(z).
Полученная циклическая группа имеет порядок d. Поэтому дискретное преобразование Фурье над p1 (z) можно обобщить над кольцом P(z), если конечное кольцо p1 (z) содержит корень d-ой степени из единицы и d имеет мультипликативный обратный элемент d*, такой что справедливо
d*d=pv-1. (5)
Доказательство закончено.
Основным преимуществом теоремы является возможность организации ортогональных преобразований сигналов на основе обобщенного ДПФ в расширенных полях Галуа при различных значениях разрядности сетки, задаваемой значением конечного кольца P(z). При этом вычисления организуются параллельно, независимо друг от друга, что значительно повышает быстродействие ЦОС.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
- Калмыков И.А. Математические модели нейросете-вых отказоустойчивых вычислительных средств, функционирующих в полиномиальной системе классов вычетов/ Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2005. - 276 с
- Калмыков И.А., Чипига А.Ф. Структура нейронной сети для реализации цифровой обработки сигналов повышенной разрядности/Вестник Ставропольского Государственного Университета,2004, Выпуск №38 с.46-50.
- Элементы применения компьютерной математики и нейроинформатики/Н.И. Червяков, И.А. Калмыков И.А., В.А. Галкина, Ю.О. Щелкунова, А.А. Шилов; Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2003. - 216с.
Работа представлена на заочную научную электронную конференцию «Современные проблемы науки и образования» 15-20 ноября 2008 г. Поступила в редакцию 13.01.09