Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

Postcatelectrotonic potentials and excitability changes following them in nerve fibres

D.A. Evstigneev
When cathodal subthreshold impulse was turned off, excitable membrane of isolated nerve fibers and nervous trunk show postelectrotonic depolarization, that is slow recovery of membrane potential to the resting level. Postelectrotonic depolarization of the single nodes of Ranvier and nervous trunk is registered not only in normal conditions, but also after complete block of sodium channels. The size and du ration of nervous trunk postelectrotonic depolarization under subthreshold depolarizing current increase with duration of applied depolarization: when cathode current 1 ms in duration was used they were 0.093 0.004 mV and 7.123 0.576 ms respectively, when current was 5 ms in duration, they were 0.189 0.005 mV and 23.212 1.186 ms, and 10 ms of depolarization gives values of 0.220 0.011 mV and 68.721 3.389 ms. Application of the train of catelectrotonic impulses leads to postelectrotonic depolarization built-up. As postelectrotonic depolarization is found not only in normal conditions, but also after complete block of sodium channels, it is reasonable to suggest that the most probable reason for postelectrotonic depolarization is the outflow of potassium.
Обнаруженные Дюбуа Реймоном [12] электротонические потенциалы в последующем были обстоятельно исследованы Е. Пфлюгером [14], Б.Ф. Вериго [1, 2], Р. Лоренте де Но [13], Б.И. Ходоровым [6, 7], Д.С. Воронцовым [3] и др. В этих работах описана феноменология электротонических сдвигов поляризации и сопровождающих их изменений возбудимости. Так, в 1859 году Е. Пфлюгером установлено, что во время поляризации возбудимость под катодом увеличивается, под анодом уменьшается, а после выключения поляризации возбудимость под полюсами меняет свой знак на противоположный (извращается): понижается под катодом и повышается под анодом. В работах Б.Ф. Вериго [1, 2], а затем  Б.И.  Ходорова  [6,  7]  была  высказана мысль, что эти контрастные изменения возбудимости являются не извращениями, а продолжением тех самых изменений возбудимости, которые развились в нерве ещё во время поляризации.

Подробное изучение электротонических потенциалов - физического электротона - осуществлено в 1947 году Р. Лоренте де Но [13], который всесторонне изучив физический кати анэлектротон, выделил в их развитии два компонента: быстрый, длительностью менее 1 мс, и медленный, следующий за быстрым и продолжающийся до выключения поляризующего тока.

В нашей предыдущей работе [5] дополнительно к быстрому и медленному компонентам электротона, развивающимся во время поляризации [13], обнаружен ещё один компонент продолжительный след деполяризации, следующий после медленного электротона постэлектротоническая деполяризация. Целью настоящей работы явилось исследование амплитудно-временных характеристик обнаруженной нами постэлектротонической деполяризации и сопровождающих её изменений возбудимости.

Опыты проводили на одиночных нервных волокнах с «прикрытым» [4] перехватом Ранвье и целых нервах озёрной лягушки. После выдерживания изолированного нерва в растворе Рингера в течение 40 - 90 минут производили выделение из него одиночного нервного волокна.

Препаровку волокна в области перехвата Ранвье производили вместе с прилегающими к нему участками соседних волокон с целью предохранения перехвата от возможного травмирования и растягивания. Исследуемый перехват (N1) помещали в среднюю канавку камеры (рис. 1, А), заполняемую раствором Рингера или растворами изучаемых веществ. Два других перехвата (N1 и N3) с участками нервного ствола располагали на отшлифованных и закруглённых предметных стёклах (рис. 1, А). Активность перехватов N1 и N3 подавляли 0.2% раствором новокаина. Раздражение исследуемого перехвата N2 и отведение от него потенциалов производили с помощью трёх последовательно расположенных неполяризующихся каломельных электродов. Дистальный и средний электроды использовали для нанесения толчков постоянного тока, средний и дистальный - для регистрации ответной реакции. Часть исследований выполнена на математической модели Франкенхёйзера-Хаксли [11].

В опытах на нервном стволе использовали ту же схему стимуляции и регистрации ответа нерва, что и на изолированных нервных волокнах. Отводимые потенциалы подавали на усилитель постоянного тока УУ-2М, затем на осциллограф физиологической установки ЭПМ НИИЭМ АМН СССР и на аналого-цифровой преобразователь компьютера. Нейрограммы обрабатывали с помощью математической программы Mathcad 2000.

Отправным моментом исследования постэлектротонической деполяризации послужили опыты на одиночных перехватах Ранвье изолированных нервных волокон в условиях блокирования натриевых каналов новокаином и тетродотоксином [4]. Было обнаружено, что после приложения к такому нервному волокну деполяризующего электротонического стимула примерно такой же амплитуды и длительности, как и потенциал действия, возникает продолжительный след деполяризации (Рис. 1, В). В процессе ритмической стимуляции нервного волокна данный след суммируется с образованием деполяризационного плато (Рис. 1, Г).

Рис 1.

В опытах на целом нерве для исключения влияния на постэлектротонические потенциалы потенциалов действия, наносили подпорговые катодические стимулы. Оказалось, что после выключения поляризующего тока и прекращения катэлектротонических потенциалов регистрируется аналогичный наблюдаемому на одиночных нервных волокнах след деполяризации. В ответ на приложение к нерву одиночных подпороговых деполяризующих стимулов различной длительности (1,5 и 10 мс) возникал катэлектротонический потенциал (Рис. 2, А) амплитудой 2 3 мВ. После выключения поляризующего стимула происходило постепенное восстановление мембранного потенциала к исходному уровню - постэлектротоническая деполяризация. После приложения катода продолжительностью 1 мс постэлектротоническая  деполяризация  составила 0.093 ± 0.004 мВ. Снижение постэлектротонической деполяризации происходило по экспоненте в течение 7.123± 0.576 мс. После поляризации нерва катодным током длительностью 5 мс амплитуда и длительность постэлектротонической деполяризации увеличились и составили 0.189 ± 0.005 мВ и 23.212 ± 1.186 мс, а после катэлектротона длительностью 10 мс 0.220 ± 0.011 мВ и 68.721 ±  3.389 мс соответственно. 

Для определения изменений возбудимости во время постэлектротонической деполяризации использовали методику нанесения парных стимулов: первого - поляризующего и второго тестирующего, интервал между которыми произвольно изменяли от 1 до 200 мс. Во время постэлектротонической деполяризации обнаружена фаза повышенной возбудимости - потенциал действия в ответ на субмаксимальный тестирующий стимул возрастает по своей амплитуде. Фаза повышенной возбудимости по продолжительности соответствует длительности постэлектротонической деполяризации.

Если на нерв нанести не один, а серию катодических стимулов происходит суммация постэлектротонической деполяризации с образованием  небольшого  деполяризационного  плато (Рис. 2, Б). Величина и характер суммации постэлектротонической деполяризации в процессе ритмической стимуляции зависят от её величины после каждого одиночного стимула. Суммация постэлектротонической деполяризации в наших экспериментах в процессе нанесения серии катодических толчков длительностью 10 мс была более выражена, чем при толчках длительностью 1 мс.

Рис 2. 

Таким образом, полученные экспериментальные данные свидетельствуют о том, что выраженность  постэлектротонических  изменений поляризации и возбудимости зависит от длительности деполяризации мембраны приложением катодического стимула. Постэлектротоническая деполяризация суммируется при ритмическом приложении катодических толчков, причём чем длительнее прикладываемые к нерву катодические толчки, тем выраженнее постэлектротоническая деполяризация.

Возникает вопрос, какие же изменения происходят в нервных волокнах при пропускании через них прямоугольных катодических стимулов. В экспериментах с фиксацией потенциала [8, 9, 12] показано, что в месте приложения прямоугольных деполяризующих стимулов надпороговой силы возникают кратковременно длящийся (около 1 мс) входящий натриевый ток и задержанный выходящий калиевый ток, продолжающийся в течение всей поляризации. Нанесение подпороговых деполяризующих стимулов силой менее 0.5 порога вызывает возникновение только выходящего калиевого тока (рис. 3), а при силах тока, превышающих 0.5 реобазы, возникают локальные токи, состоящие из натриевого и калиевого компонентов. Воспроизведение катэлектротонических потенциалов и сопровождающих их ионных токов осуществлено на математической модели нервного импульса амфибий [11].

Рис 3. 

В проведённых нами опытах с околопороговой катодической поляризацией нерва возникают как натриевый, так и калиевый токи, величина которых в несколько раз меньше по сравнению с аналогичными токами, обусловливающими возникновение потенциала действия. Натриевый ток восходящей фазы локального ответа значительно ослабевает к концу 1 мс. Калиевый же ток продолжается в течение всей деполяризации. Исходя из того, что натриевый ток восходящей фазы локального ответа резко ослабевает к концу 1 мс, а постэлектротоническая деполяризация регистрируется и при длительностях раздражения 5 и 10 мс, реальный вклад ионов натрия в генерацию постэлектротонической деполяризации мало вероятен. 

Рост постэлектротонической деполяризации при увеличении амплитуды и длительности катэлектротона, а также наличие продолжительного следа деполяризации у нервных волокон с прикрытым перехватом Ранвье при заблокированных натриевых каналах [4] позволяет рассматривать в качестве наиболее вероятного фактора, определяющего возникновение постэлектротонической деполяризации, выход ионов калия.

Выводы

  1. После деполяризации возбудимой мембраны одиночного перехвата Ранвье изолированных нервных волокон и целого нерва постоянным током подпороговой силы длительностью 1, 5, 10 мс регистрируется постэлектротоническая деполяризация, представляющая собой медленное восстановление поляризации к исходному уровню. Постэлектротоническая деполяризация одиночных перехватов Ранвье и изолированного нерва обнаруживается не только в исходном состоянии, но и при полном блокировании натриевых каналов.
  2. Амплитуда и длительность постэлектротонической деполяризации целого нерва при подпороговой деполяризации увеличиваются пропорционально длительности приложенной деполяризации: после пропускания катодического тока продолжительностью 1 мс они составили 0.093  0.004 мВ, а длительность 7.123  0.576 мс, после деполяризации длительностью 5 мс -0.189  0.005 мВ и 23.212  1.186 мс, а после деполяризации длительностью 10 мс 0.220  0.011 мВ и 68.721  3.389 мс соответственно.
  3. В процессе пропускания через нерв серии катэлектротонических потенциалов происходит суммация постэлектротонической деполяризации, выраженность которой пропорциональна величине и продолжительности поляризации нервных волокон постоянным током.
  4. На основании наличия постэлектротонической деполяризации у одиночных перехватов Ранвье и изолированного нерва как в исходном состоянии, так и при полном блокировании натриевых каналов, в качестве наиболее вероятного фактора, определяющего возникновение постэлектротонической деполяризации, рассматривается выход ионов калия.

Список литературы

  1. Вериго Б.Ф. // Труды СПб. Общества естествоиспытателей. - 1883. - Т. 14. - В. 1. - С 15. 
  2. Вериго Б.Ф. К вопросу о действии на нерв гальва3нического тока прерывистого и непрерывного.С.-П. - 1888. (цитировано по: Ходоров Б.И. Общая физиология возбудимых мембран. - М.: Наука, 1975. - 406 С.).
  3. Воронцов Д.С. // Физиологический журнал СССР им. И.М. Сеченова 1962. - V. 48. № 5. C. 510.
  4. Каталымов Л.Л. // Доклады АН. 1995. V. 341. № 6. С. 839.
  5. Каталымов Л.Л., Евстигнеев Д.А. // Успехи соврем. естествознания. 2002. №5. С.45.
  6. Ходоров Б.И. // Успехи соврем. биол. -1950. Т. 29. - В. 3. - С. 329.
  7. Ходоров Б.И. // Успехи соврем. биол. -1962. - Т. 54. - В. 3. - С. 333.
  8. Dodge F.A., Frankenhaeuser B. // J. Physiol.- 1958. - V. 143. - P. 76.
  9. Dodge F.A., Frankenhaeuser B. // J. Physiol.- 1959. - V. 148. - P. 188.
  10. Du Bois-Reymond E. Untersuchungen űber thierische Elektrizitat. Berlin. 1848. (цитировано по: Ходоров Б.И., 1975).
  11. Frankenhaeuser  B.,  Huxley  A.F.  //  J. Physiol. - 1964. - V. 171. - P. 302.
  12. Hodgkin A.L., Huxley A.F. // J. Physiol. -1952. - V. 117. - P. 500.
  13. Lorente de No R. A studi of nerve physiology. Stud. Rockfeller Inst. med. Res. 1947. V. 131132. Parts 1-2. 620 С.
  14. Pflűger E. Untersuchungen űber die Physiologie des Elektrotonus. Berlin. 1859. (цитировано по: Ходоров Б.И., 1975).