Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

Рассмотрим свойства круга Лагира (поворотного круга, или круга перегибов).

Свойство 1. Разность алгебраических значений кривизны подвижной и неподвижной центроид в любой точке их сопряжения равна половине алгебраического значения кривизны окружности перегибов.

Связь между радиусами кривизны неподвижной и подвижной центроид

f

где f - диаметр круга Лагира. Поэтому

kпц - kнц = 0,5kл,

где kпц - кривизна подвижной центроиды; kнц - кривизна неподвижной центроиды, kл - кривизна окружности перегибов.

Свойство 2.

1 случай. ρпцρнц > 0 - внутреннее касание центроид. Круг Лагира и центроиды лежат по отношению к их общей касательной с одной стороны. При этом, если ρнц = ∞, то rл = 0,5ρпц и полюс поворота К совпадает с центром кривизны подвижной центроиды Опц; если ρпц = ρнц, то круг Лагира отсутствует (rл = ∞).

2 случай. ρпцρнц < 0 - внешнее касание центроид. Центроиды разделены касательной τ-τ, круг Лагира и подвижная центроида лежат с одной стороны по отношению к ней. При этом, если ρпц = -ρнц, то rл = 0,25ρнц; если ρнц = ∞, то rл = 0,5ρпц и полюс поворота К совпадает с центром кривизны подвижной центроиды.

Таким образом, обе центроиды и круг Лагира имеют общие касательную τ-τ и нормаль n-n в точке Р.
Круг Лагира всегда расположен со стороны подвижной центроиды.

Свойство 3. Окружность перегибов разделяет подвижную плоскость на области по признаку знака кривизны их траекторий. Радиус кривизны точки М, для которой мгновенный радиус равен r и Э - прямая (прямая экстремумов) составляет угол φ с общей нормалью к центроидам (рис. 1) f. Знак ρМ зависит от знака знаменателя.

При r - d1cosφ > 0 траектории точек подвижной плоскости, лежащих за пределами круга Лагира, к мгновенному центру вращения P обращены вогнутостями, а при r - d1cosφ < 0 (внутри круга Лагира) - выпуклостями. При r - d1cosφ = 0 ρМ = ∞ (точка перегиба).

Свойство 4. Любая близлежащая к окружности перегибов точка подвижной плоскости в произвольном положении последней может входить в круг Лагира или выходить из него, соответственно, под острым углом (0 < φ< π/2), кроме точек Р (φ = π/2) и К (φ = 0).

pic 

Рис. 1

 Свойство 5. Геометрическое место центров кривизны траекторий точек окружности F, касающейся в точке Р прямой τ-τ, является также окружностью, касающейся этой прямой в той же точке. Радиус окружности Е и её положение зависят от отношения диаметров окружности F и круга Лагира (рис. 2). Положим, диаметр окружности F равен dF = nd1. Возможны случаи.

ppic 

Рис. 2

1 случай. При n < 1 окружность F лежит внутри круга Лагира. Диаметр окружности Е dE = nd1/(1 - n). Окружность Е и круг Лагира расположены относительно прямой τ-τ с одной стороны. При n = 0,5 dE = nd1 (пара F2 - E2), т.е. окружность Е совпадает с поворотной окружностью. При n < 0,5dE < d1 (F1 - E1), а при n > 0,5dE > d1 (F3 - E3).

2 случай. При n > 1 окружность F лежит вне круга Лагира, находясь с ним с одной стороны по отношению к τ-τ, dE = nd1/(1 - n). Окружность Е и круг Лагира лежат по разные стороны от τ-τ, при этом  f (). Если n = 1, то окружность Е вырождается в прямую τ-τ (F4 - E4).

3 случай. Для точек, находящихся с другой стороны от прямой τ-τ относительно круга Лагира,
dE = nd1/(1 + n). Если 0 < n ≤ 1, то f (F6 - E6). При n = ∞ dF = d1, т.е. окружность Е является границей областей центров кривизны траекторий точек, лежащих вне круга Лагира, разделённых прямой τ-τ (E7).