Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

В работе Пономарёва [1] был предложен метод получения основного уравнения механики с помощью введения в ней функции состояния .Такой подход позволяет в отличии от использования традиционного принципа наименьшего действия проще получить уравнение Лагранжа.

Введём в рассмотрение функцию состояния П которая описывает состояние исследукмой частицы и зависит от qi, qi(t), t где qi(t) это обобщённая координата с индексом i, а qi отличается от qi(t) только тем что qi это функция только от начального вркмени

dП = ∑(∂П∕∂qi)dqi + ∑(∂П∕∂qi)(dqi/dt)dt + (∂П∕∂t)dt.

Введём следующие обозначения: рi = ∂П∕∂qi,

W = -∂П∕∂t, L = ∑(∂П/∂qi)(dqi/dt)dt + (∂П/∂t)dt,

Из этого следует:

L = р1(dq1/dt) + р2(dq2/dt) + ... + рm(dqm/dt) - W, (1)

где W -это полная энергия, р1, р2, ..., рm - обобщённые импульсы.

Обозначим через ∑ суммирование всех элементов с индексом i. Так например в книге Г. Голдстейна «Классическая механика» пишется :

H(p,q,t) = ∑(dqi/dt)рi - L(q,dq∕dt, t)

где H - это функция Гамильтона.

Рассмотрим случай когда H = W. Поэтому:

L = ∑(dqi/dt)рi -
- ((1/2)∑(dqi/dt)рi + F) = (1/2)∑(dqi/dt)рi - F. (2)

В книге Г. Голдстейна «Классическая механика» пишется что эта формула выполняется когда система консервативна ,а кинетическая энергия является однородной квадратичной функцией от обобщённых скоростей. Где F - это потенциальная энергия а ∑ - это суммирование всех элементов с индексом i.

С учётом того что в большинстве случаев обобщённый импульс зависит не более чем от производной первого порядка от соответствующей обобщённой координаты то согласно формуле 2 мы получаем:

∂L/∂(dqi/dt) = рi.

Дифференциал dП будет полным дифференциалом если смешанные частные производные от П по её аргументам не будут зависеть от порядка дифференцирования.

Например

δр1/δt = ∂L/∂q1.

Так как мы имеем дело с полной функцианальной производной то с учётом формулы ∂L/∂(dq1/dt) = р1 получаем уравнение Лагранжа :

d(∂L/∂(dq1/∂t))/dt = ∂L/∂q1.

Список литературы

  1. Пономарёв Ю.И. Функция состояния в классической механике и теории поля // Успехи современного естествознания. - 2008.
  2. Голдстейн Г. Классическая механика: монография. - М.: Наука, 1975.