Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

SHOSHONITIC GRANITOIDS OF TIGIREKSKII MASSIVE OF ALTAI: GEOCHEMISTRY, PETROLOGY AND ORE MINERALIZATION

Gusev A.I. Gusev A.A.
The geological, geochemical and petrological data lead on shoshonitic graniroids of Tigirekskii massive of Altai. 5 phases detached in composition of massive: 1 – gabbro; 2 – diorites, monzodiorites; 3 – sienites, granodiorites, granosienites; 4 – granites, moderate-alkalic granites; 5 – leicogranites and moderate-alkaline leicogranites with fluorites. Rock types of massive refered to normal calc-alkalic and shoshonitic petrogenetic sieries. Sienites and monzodiorites weighed to banakites on composition. Differentiation of deep spot melting and fractionation of rare earth elements in processes of forming massive that it was reflected on ratio in rocks of elements groups LILE and HFSE with considerable depletation of last. Change of type tetrad effect fractionation of rare earth elements happened in rocks that it is link with different of saturation of melts by fluids and volatile components. Deposits and manifestations of iron, tungsten, molibdenium, berillium, aquamarine, quartz cristal, rauhtopaz connected with massive. Keywords: petrochemistry, geochemistry, petrology, shoshonitic granitoids, tetrad effect fractionation of rare earh elements, ore mineralization of iron, tungsten, molibdenium, berillium, aquamarine, quartz cristal, rauhtopaz

Тигирекский массив гранитоидов находится вприграничной полосе между Алтайским краем иРеспубликой Казахстан вмеждуречье Ини, Белой (левые притоки р.Чарыша) иБелопорожной Убы (правый приток р.Убы). Ранее рядом исследователей всоставе Тигирекского массива выделялись три фазы внедрения. По мнению О.В.Мурзина [3], впетротипическом Синюшинском интрузивном ареале первая фаза внедрения представлена кварцевыми сиенитами, граносиенитами, гранодиоритами имеланогранитами (5 %); вторая - биотитовыми ироговообманково-биотитовыми гранитами (85 %); третья - субщелочными лейкогранитами илейкогранитами (10 %). Все исследователи относят интрузивные образования массива ксинюшинскому комплексу (P2-T1). По нашим данным Тигирекский интрузив формировался в5фаз иимеет более сложный состав: 1фаза - габбро; 2фаза - диориты имонцодиориты; 3фаза - сиениты, гранодиориты играносиениты; 4фаза - граниты иумеренно-щелочные граниты; 5фаза - лейкограниты иумерено-щелочные лейкограниты сфлюоритом. Жильная фаза представлена дайками аплитов, аляскитов ипегматитов. Наиболее ранние породные типы первых двух фаз внедрения обнаружены нами вприконтактовой южной части массива на территории Казахстана, атакже врайоне г.Россыпной ввиде ксенолитов различных размеров от 20см впоперечнике идо нескольких метров. Здесь же обнаружены иксенолиты гранодиоритов. Следует отметить, что габброиды идиориты имеют крупнокристаллическое сложение, характерное для первых фаза внедрения интрузивов. Вцелом набор породных типов близок таковому для интрузий Айского ареала [2], которые являются типичными представителями шошонитовой серии пород. Химический состав породных типов приведен втабл.1.

Таблица 1

Средние составы породных типов Тигирекского массива (масс. %)

Породные типы

SiO2

TiO2

Al2O3

Fe2O3

FeO

MgO

CaO

Na2O

K2O

P2O5

Сумма

Габбро 1 ф (n=3)

51,09

1,20

12,13

3,34

6,55

8,20

10,75

2,21

1,14

0,91

99,52

Диориты 2 ф (n=2)

53,12

1,06

16,11

4,71

4,85

6,75

8,11

3,11

1,76

0,63

99,77

Монцодиориты 2 ф (n=2)

57,88

1,37

17,55

3,01

4,13

1,90

4,38

4,21

4,78

0,44

99,95

Cиениты 3 ф (n=3)

63,95

0,55

16,31

1,02

2,70

0,92

2,73

3,61

6,12

0,27

99,92

Граносиениты 3 ф (n=2)

66,15

0,47

16,58

1,13

1,44

0,91

2,21

4,76

5,05

0,21

99,76

Гранодиориты 3 ф (n=3)

67,14

0,61

16,21

0,64

3,94

1,14

2,54

3,89

3,01

0,23

99,32

Граниты 4 ф (n=16)

71,70

0,33

13,51

1,15

1,51

0,51

1,71

3,30

4,65

0,10

99,59

Граниты ум.-щел. 4 ф (n=4)

72,60

0,40

13,31

1,50

1,14

0,90

1,40

3,88

5,12

0,11

99,91

Лейкограниты 5 ф (n=13)

76,21

0,24

12,09

0,84

1,35

0,25

0,41

3,25

4,55

0,02

99,88

Лейкограниты ум. - щел. сфлюоритом
5 ф (n=11)

74,48

0,28

12,81

0,87

1,31

0,42

1,02

3,28

5,12

0,04

99,74

Примечание. Анализы выполнены влаборатории Сибирского Испытательного Центра (г.Новокузнецк). 1ф - 5ф - фазы становления массива; n - количество проб; сокращения: щел. - щелочные, ум.-щел. - умеренно-щелочные.

По химизму среди пород массива выделяются известково-щелочные разности - габбро, диориты, гранодиориты, вкоторых натрий преобладает на калием иумеренно-щелочные разности - монцодиориты, сиениты, граниты, лейкограниты, вкоторых обратная картина - калий преобладает над натрием. Это подтвержадется также иположением фигуративных точек породных типов на диаграмме ТАС (рис.1). Вранних фазах (до гранитов) наблюдается высокое содержание фосфора, аначиная сгранитов концентрации фосфора падают, что связано суменьшением апатита вкислых разностях пород.

pic

Рис. 1. Петрохимическая диаграмма диагностики горных пород в координатах
SiO2- (Na2O + K2O) для породных типов Тигирекского массива:
1 - габбро; 2 - диориты; 3 - монцодиориты; 4 - сиениты; 5 - граносиениты; 6 - гранодиориты;
7 - граниты; 8 - граниты умеренно-щелочные; 9 - лейкограниты;
10 - лейкограниты умеренно-щелочные

Микроэлементный состав пород отражают данные табл.2. Обращают на себя внимание высокие концентрации стронция ибария впородах от габбро до гранодиоритов, что весьма характерно для шошонитовой серии [2].

Таблица 2

Микроэлементный состав породных типов Тигирекского массива (в г/т)

 

Габбро

Диориты

Монцодиориты

Сиениты

Граносиениты

Гранодиориты

Граниты

Граниты ум-щел

Лейкограниты

Лейкограниты ум.-щел

Li

22,2

21,5

20,5

18,8

37,6

43,3

55

44

65,3

12,9

Rb

96

102

104

109

80

126

145

35

326,3

21,1

Cs

1,2

1,5

1,8

2,2

2,8

3,2

3,6

2,5

11,0

2,1

Ba

1772

1805

1870

1959

750

703

310

175

260,0

27

Sr

1651

2120

2320

4750

630

550

480

120

101,5

15

Zr

342

341

341

286

243

245

250,0

210

130,2

204

Hf

4,6

4,7

4,8

14

7,5

7,0

6,9

5,5

4,5

4,8

Nb

6,8

6,5

6,2

20,7

33

28

24,0

58

20,4

65

Ta

0,7

0,6

0,6

1,1

2

3,1

3,2

5,9

2,0

4,7

Th

4,8

4,7

4,5

5,4

24

26

27

43

38,3

48

U

2,5

2,6

2,6

2,9

9,5

8,8

8,0

12

12,2

14

Y

21.7

20

19,8

16,8

18

22

32,0

17,8

23,0

16,9

La

14

15,5

16

46

73

45

32,0

76

43,9

81

Ce

42

43

44

58

86

91

97

53

58,1

67

Pr

8,8

7,5

6,2

6,4

6,5

6,6

6,7

13

5,8

12

Nd

21

21,6

22

24

24

25,1

25,5

24

22,1

22

Sm

6,8

6,7

6,6

5,4

4,2

4,3

4,6

15

4,1

13

Eu

1,71

1,68

1,67

1,42

1,23

1,1

0,84

10

0,62

12,4

Gd

7,2

6,8

6,6

6,1

3,3

0,9

3,8

16

3,3

17

Tb

1,8

1,4

1,1

0,94

0,52

0,55

0,58

13,1

0,56

12,6

Dy

5,5

5,4

5,3

3,9

2,3

3,2

3,55

24,8

3,65

23,5

Ho

1,5

1,4

1,2

0,8

0,75

0,72

0,70

8,5

0,65

7,8

Er

4,6

3,3

2,9

2,6

2,5

2,3

2,2

15,8

2,1

15,2

Tm

0,7

0,6

0,6

0,4

0,3

0,35

0,41

3,2

0,33

2,2

Yb

3,6

3,5

3,4

2,8

1,22

3,2

3,60

9,6

3,21

10,7

Lu

0,7

0,6

0,6

0,4

0,3

0,52

0,61

1,56

0,50

1,52

Co

15,5

14,1

10,9

10

9,8

9,5

9,3

1,1

2,2

1,2

Cr

35,8

28,9

23,4

23,8

24,1

23,0

24,0

4,9

15,3

5,4

Sc

16,8

19,5

20,5

20

19,6

20,1

21,0

2,1

7,4

1,3

Ga

17,9

20

21,1

22

23,1

22,6

22,1

19,8

22,7

18,5

Cu

22,8

21

20

21

20

19,6

19

7,5

15

8,9

Sn

2,5

2,4

2,1

1,6

1,8

3,4

3,3

4,8

4,7

5,0

W

0,5

0,5

0,6

0,6

1,7

1,5

2,6

2,9

2,8

3,2

Mo

0,4

0,3

0,5

0,6

0,8

1,3

2,4

2,7

3,1

3,0

Be

6,4

7,0

7,5

3,9

1,7

3,1

2,8

4,1

4,3

3,6

Rb/Sr

0,058

0,048

0,045

0,023

0,13

0,23

0,30

0,29

3,21

1,41

Th/U

1,92

1,81

1,73

1,86

2,52

2,95

3,37

3,58

3,14

3,43

La/YbN

2,57

2,93

3,11

10,9

39,5

9,26

5,9

5,23

8,91

5,0

Примечание. Анализы выполнены вЛаборатории ИМГРЭ методом ICP-MS (г.Москва).

Весь набор пород массива характеризуется умеренными ивысокими нормированными по хондриту значениями La/YbN, варьирующими от 2,57 до 39,5, свидетельствуют оразной степени дифференцированности расплавов вотношении лёгких итяжёлых редкоземельных элементов. Это также свойственно шошонитовой серии гранитоидов.

В целом гранитоидная часть пород массива может быть отнесена книзко-титанистой группе (содержание TiO2 впородах начиная от сиенитов клейкогранитам менее1). Они обогащены группой элементов LILE идеплетированы элементами HFSE (высокие содержания Rb, Ba, Sr ивысокие отношения Rb/Sr от 0,13 вграносиенитах до 3,21 влейкогранитах, умеренные отношения Th/U, варьирующие от 2,52 до 3,58). Это указывает на сильное фракционирование поздних кислых расплавов вотношении групп элементов LILE/HFSE.

На диаграмме K2O-SiO2 все породы кроме известково-щелочных разностей (габбро, диоритов, гранодиоритов) попадают вполе шошонитовой серии (рис.2). При этом, монцодиориты исиениты локализуются вполе банакитов.

pic

Рис. 2. Диаграмма K2O - SiO2
для породных типов Тигирекского массива.
Поля пород: 1 - абсарокит; 2 - шошонит; 3 - банакит; 4 - высоко-К базальт;
5 - высоко-К андезибазальт; 6 - высоко-калиевый андезит; 7 - высоко-К дацит по [7]. Cерии
пород: I - толеитовая; II - известково-щелочная; III - высоко-К известково-щелочная;
IV - шошонитовая. Породные типы Тигирекского массива: 1 - габбро, 2 - диориты,
3 - монцодиориты, 4 - сиениты, 5 - граносиениты, 6 - гранодиориты, 7 - граниты, 8 - граниты
умеренно-щелочные, 9 - лейкограниты, 10 - лейкограниты умеренно-щелочные

Весьма интересные данные получены нами при расчётах значений тетрадного эффекта фракционирования редкоземельных элементов (РЗЭ). Некоторые отношения элементов изначения тетрадного эффекта фракционирования лантаноидов приведены втабл. 3.

Анализ табл.3 показывает, что впроцессе становления Тигирекского массива выявляется два типа тетрадного эффекта фракционирования РЗЭ: W иM. При этом происходила сложная картина изменений тетрадного эффекта, что вызвано было нестабильностью физико-химических параметров расплавов иих флюидного режима. На первом этапе при кристаллизации габброидов идиоритоидов первой ивторой фаз проявлен был М-тип фракционирования РЗЭ (значение TE1,3 превышает 1,1). Вгибридных разностях пород (сиенитах играносиенитах) наблюдается W-тип тетрадного эффекта (значение TE1,3 менее 0,9). Начиная сгранодиоритов икончая умеренно-щелочными лейкогранитами происходило фракцинирование РЗЭ вновь по М-типу (значение TE1,3 варьируют от 1,1 до 1,4). Незначимое значение TE1,3 зафиксировано лишь для лейкогранитов. Такой ход изменения тетрадного эффекта фракционирования РЗЭ интерпретируется нами следующим образом. Кристаллизация габброидов идиоритоидов происходила из расплава, обогащённого летучими компонентами, что подтверждается высокими концентрациями фосфора ибериллия вранних фазах. Становление последующих дериватов (гибридных сиенитов играносиенитов) было вызвано контаминацией корового материала, обогащённого вадозной водой, которая иповлияла на изменение типа фракционирования РЗЭ. Последующая кристаллизация пород от гранодиоритов кумеренно-щелочным лейкогранитам вновь протекала вусловиях насыщенности расплавов флюидами, обогащёнными фтором, очём свидетельствует присутствие флюорита вумеренно-щелочных лейкогранитах.

Таблица 3

Отношения химических элементов изначения тетрадного эффекта фракционирования РЗЭ впородных типах Тигирекского массива ивхондритах

Породные типы ихондриты

Y/Ho

Eu/Eu*

La/Lu

Zr/Hf

Sr/Eu

TE1,3

Габбро

14,46

0,054

20,0

74,3

965,1

1,31

Диориты

14,3

0,055

25,8

72,5

1261

1,17

Монцодиориты

16,7

0,055

26,7

71,04

1389

1,11

Сиениты

21,0

0,055

115,0

20,4

3345

0,88

Граносиениты

24,0

0,071

243,3

32,4

512

0,78

Гранодиориты

30,55

0,085

86,5

35,0

500,0

1,4

Граниты

45,7

0,043

52,4

36,2

571,4

1,11

Граниты умеренно-щелочные

2,09

0,14

48,7

38,2

12,0

1,27

Лейкограниты

35,4

0,037

87,8

28,9

163,7

0,95

Лейкограниты ум.-щел. сфлюоритом

2,1

0,19

53,3

42,5

1,2

1,29

В хондритах

29,0

0,32

0,975

36,0

100,5

-

Примечание. ТЕ1,3 - тетрадный эффект по В.Ирбер [6]. Eu*=(SmN+GdN)/2. Значения РЗЭ нормированы по хондриту по [4].

Сложная картина насыщенности различными летучими ифлюидами описанных дериватов, вероятно, сказалась ина многообразной рудогенерирующей способности интрузива. Пространственно ипарагенетически сним связаны месторождения ипроявления железа (железорудные Белорецкое, Инское), вольфрама, молибдена (редкометалльное месторождение Белорецкий рудник), бериллия (пегматитовые месторождения Тигирекское, Гор Рассыпной, Чайной идругие). Помимо указанных типов оруднения впегматитах Тигирекского месторождения, Гор Чайной иРаасыпной присутствуют прекрасные аквамарины идрузы горного хрусталя, раухтопаза [1].

Таким образом, Тигирекский массив предствлен породами нормальной известково-щелочной ишошонитовой серий, формиовавшихся в5фаз от габброидов умеренно-щелочных до лейкогранитов сфлюоритом. Вмагматическом глубинном очаге происходили сложные процессы дифференциации, сопровождавшиеся фракционированием редкоземельных элементов. Смена типов тетрадного эффекта фракционирования редкоземельных элементов связана сменявшимися условиями флюидного режима, что сказалось на комплексной металогенической специализации Тигирекского массива собразованием емтсорождений ипроявлений железа, вольфрама, молибдена, бериллия, аквамарина, горного хрусталя, раухтопаза.

Список литературы

  1. Гусев А.И. Геммология Алтая сосновами геммотуризма. - Бийск: БПГУ, 2007. - 156 с.
  2. Гусев А.И., Гусев А.А. Шошонитовые гранитоиды: петрология, геохимия, флюидный режим иоруденение. - М.: Изд-во РАЕ, 2011. - 125 с.
  3. Туркин Ю.А., Федак С.И. Геология иструктурно-вещественные комплексы Горного Алтая. - Томск: STT, 2008. - 460 c.
  4. Anders E., Greevesse N. // Geochim. Cosmochim. Acta. - 1989. - Vol. 53. - Р. 197-214.
  5. Gusev A.I. // European Journal of Natural History. - 2011. - № 1. - P. 41-45.
  6. Irber W. // Geochim. Cosmochim Acta. - 1999. - Vol. 63. - Р. 489-508.
  7. Peccerillo A., Taylor S.R. // Contrib. Mineral. Petrol. - 1976. - Vol. 58. - P. 63-81.