Задача формирования структурного модуля с необходимыми геометрико-топологическими характеристиками является одной из значимых для конструирования невырожденных модулярных 3D структур кристаллов [1]. В соответствии с принципом модулярного строения кристаллов [2] для каждого структурного типа веществ может быть найден по определенному алгоритму набор базовых модулей, который является его диагностической модулярной характеристикой [3, 4]. Для модулярного дизайна может быть формально использован характеристический базовый модуль, соответствующий по составу одной формульной единице вещества. Однако с его помощью может быть сконструирована только вырожденная модулярная структура, т.к. его конфигурация и топология не допускает других позиционирований, отличных от упорядочения в модульной структуре анализируемого типа [4].
В общем случае модульное строение 3D трижды периодических структур кристаллов описывается следующим структурным кодом [5]:
R33{M(К, b) (G30)(||CP||)}[(LC33)(G33(z))],
где символ M означает базовый модуль (BM) или модуль, предназначенный для модулярного дизайна (MMD). Символ BM (G30) - состав базового модуля с указанием степени неизолированности b нецентральных атомов и его локальной симметрии G30, ||CP|| - матрица кодов пространственной упаковки модулей, заданная одним из возможных способов, LC - решеточный комплекс, в соответствии с образом которого данные модули упакованы в элементарной ячейке структурного типа c симметрией G33, MMD(К, b) - состав не центросимметричного компактного и используемого для модулярного дизайна модуля с указанием его компактности К, степени неизолированности нецентральных атомов b и локальной симметрии. В случае модулярных структур используется символика S(LC)i - совокупность решеточных комплексов, в соответствии с которыми модули MMD и модульные блоки из них упакованы в ячейке i-й модулярной структуры с симметрией группы G33.
Возможность модулярного дизайна определяется комбинаторным варьированием кода упаковки (заданного матрицей ||CP||), а также изменениями состава и конфигурации модуля. Указанные процедуры приводят к получению представителей многообразия структур, производных от «материнского» структурного типа, и установлению соотношений между ними (политипных, гомологических, морфотропных). То, что указано в квадратных скобках, при вышеописанных изменениях служит дополнительной идентификационной информацией о строении конкретной модулярной структуры [5].
Рассмотрим некоторые подходы к формированию структурного модуля для последующего модулярного дизайна в структурированном 3D пространстве.
Подход 1. Если пространство структурировано, т.е. известен структурный тип кристалла, то можно определить набор базовых модулей, в том числе и характеристический модуль. В этом случае рекомендуется использовать следующие способы формирования модуля для модулярного дизайна [2, 3].
Способ 1. Изменение закона упаковки базового модуля. Отметим, что главной причиной изменения закона упаковки базовых модулей является изменение симметрии окружения центрального атома в характеристическом модуле для структуры типа шпинели за счет «незначительных искажений» в относительном расположении этих модулей. В связи с этим соответствующие модулярные структуры описываются пространственными группами, которые являются подгруппами группы Fd3m, и представляют собой возможные низкосимметричные модификации кубической шпинели с такой же ячейкой. Все эти модификации могут быть получены при фазовых переходах II рода или переходах I рода, близкого ко второму. Следует подчеркнуть, что даже при сохранении симметрии модуля превращения сопровождаются изменением его топологических характеристик - конфигурации и степени изолированности. Действительно, например, для модулей с симметрией 222, образующихся из «материнского» модуля A1(1)B12(1/6)X4(1) (с симметрией`43 m), имеем:
Таким образом, при целенаправленном изменении закона упаковки характеристического модуля может быть получено некоторое множество модулярных структур, которые являются полиморфными модификациями исходного структурного типа.
Способ 2. Целенаправленное изменение кристаллохимической топологии характеристического базового модуля. При сохранении закона упаковки изменение конфигурации характеристического базового модуля допускает два варианта изменения его степени изолированности: а) за счет целенаправленного уменьшения степени изолированности центрального атома и б) при целенаправленном увеличении степени изолированности координирующих атомов.
Для структурного типа шпинели закономерные изменения кристаллохимической топологии модулей по варианту (а) соответствуют следующей цепочке переходов:
A1(1)B12(1/6)X4(1) → A1(1)B8(1/4)X4(1) → → A1(1)B4(1/2)X4(1) → A1(1)B2(1)X4(1),
где предельный член - изолированный асимметричный модуль.
По варианту (б) изменения соответствуют другой цепочке переходов:
A1(1)B12(1/6)X4(1) → A1(1)B8(1/4)X4(1/2)X2(1) → → A1(1)B4(1/2)X8(1/2).
Здесь предельным членом является неизолированный и достаточно компактный (K < 2) асимметричный модуль, который удовлетворяет требованиям, предъявляемым к модулям для модулярного дизайна. Он представляет собой достаточно компактное объединение AX4(1/2)-тетраэдра и B4(1/2)X4(1/2)-гексаэдра, с помощью которого может быть представлена структура типа шпинели.
Отметим, что асимметричные неизолированные модули, полученные в обоих вариантах, формально могут быть использованы для модулярного дизайна.
Способ 3. Теоретико-решеточный анализ закона упаковки вероятных асимметричных модулей для модулярного дизайна и определение их конфигурации.
Анализ основан на том, что для любой пространственной группы все занятые решеточные комплексы в структурном типе могут быть в первом приближении представлены через один из решеточных инвариантов [6]. В случае, например, структурного типа шпинели состава АB2Х4 для занятых решеточных комплексов D, T и D4xxx формально имеем:
D = 0,0,0F + 1/4,1/4,1/4F, T = 5/8,5/8,5/8F + 7/8,5/8,7/8F + 5/8,7/8,7/8F + 7/8,7/8,5/8F,
D4xxx @ F2 = 7/8,7/8,7/8F + 1/8,1/8,7/8F + 7/8,1/8,1/8F + 1/8,7/8,1/8F +
+ 3/8,3/8,3/8F + 5/8,3/8,5/8F + 3/8,5/8,5/8F + 5/8,5/8,3/8F.
С учетом изменения базовых координат (левые верхние «индексы») первых трех F-комплексов T и последних четырех F-комплексов D4xxx для достижения компактности модуля наряду с комплексом 0,0,0F получим:
T = 1/8,1/8,5/8F + 7/8,1/8,3/8F + 1/8,7/8,3/8F + 7/8,7/8,5/8F,
D4xxx @ F2 = 7/8,7/8,7/8F + 1/8,1/8,7/8F + 7/8,1/8,1/8F + 1/8,7/8,1/8F +
+ 7/8,7/8,3/8F + 1/8,7/8,5/8F + 7/8,1/8,5/8F + 1/8,1/8,3/8F.
Базовые координаты полученных F-комплексов будем считать координатами для атомов A, B и X в изолированном и достаточно компактном асимметричном модуле A1(1)B2(1)X4(1) и производном от него неизолированном модуле A1(1)B4(1/2)X8(1/2). Аналогично соответствующие координаты атомов получим для комплекса 1/4,1/4,1/4F. Полученный неизолированный модуль A1(1)B4(1/2)X8(1/2) представляет собой достаточно компактное объединение AX4(1/2)-тетраэдра и B4(1/2)X4(1/2)-гексаэдра.
Таким образом, для каждого структурного типа по характеристическому решеточному комплексу может быть определен закон упаковки соответствующих базовых модулей, а также асимметричный неизолированный и более компактный, чем базовый, модуль, для которого упаковка по тому же закону соответствует некоторой модулярной структуре, генетически связанной с исходным структурным типом.
Подход 2. Более общий подход к формированию структурного модуля для модулярного дизайна применяется в отсутствии структурированного пространства. В этом случае можно использовать следующие способы.
Способ 1. Моделирование структурного типа кристаллов и формирование модуля для модулярного дизайна. Один из наиболее эффективных методов структурирования пространства основан на использовании базовых упаковок атомов с идентичной топологией окружения каждого атома. Геометрическим образом для базовых упаковок атомов может служить одна из 28 известных решеток, узлы которой образованы вершинами соответствующих компактно упакованных в пространстве комбинаций правильных и полуправильных изогонов [6]. От базовых упаковок атомов с помощью преобразования Дирихле можно перейти к компактным упаковкам атомных многогранников Вороного. Центрами этих многогранников являются топологически эквивалентные вершины изогонов, вершинами - их геометрические центры [7].
Состав одноатомных модулярных ячеек может быть усложнен путем закономерного заполнения всех типов вершин многогранника атомами другого сорта. В результате этого может быть получено множество модулярных ячеек с многоатомными структурными фрагментами, описывающее соответствующее множество вырожденных модулярных структур. Эти структуры могут рассматриваться как один из вариантов модульного представления родственных структурных типов кристаллов с одинаковым характером упаковки модулей [2, 3]. Изменения конфигурации структурного модуля с помощью процедуры целенаправленного его модифицирования (одним из способов подхода 1) проводятся до получения такой его конфигурации и топологических характеристик, которые определяют возможность его использования для последующего модулярного дизайна [4].
Способ 2. Формирование ячеистого пространства с последующим многовариантным вложением в эквивалентные ячейки определенных структурных фрагментов. В этом случае можно использовать изогональные разбиения пространства на пространственные ячейки с топологически эквивалентными узлами. Формирование ячеистого 3D пространства может быть основано на использовании изогонов одного типа, полностью заполняющих это пространство, например, призм {n44}, где n = 3, 4, 6. В результате изогонального разбиения пространства с помощью изогонов любой из 28 известных комбинаций и последующего преобразования Дирихле могут быть получены одинаковые модулярные ячейки в форме соответствующих атомных многогранников Вороного [6, 7], которые также обусловливают необходимое ячеистое 3D пространство. Вложение определенных структурных фрагментов в пространственные ячейки проводится по определенной программе формирования ближнего и дальнего порядка будущей модулярной структуры, которая описывается с помощью эволюционной модели в виде ее генетического кода (см., например, [9]).
В рамках эволюционной модели символьное описание генетического кода структуры в общем случае можно представить следующим образом:
R33{G(M(К, b))}[T(S(LC)i)],
где G(M(К, b)) - описание генератора с помощью геометрических и топологических характеристик фрагмента М; T(S(LC)i)- топология взаимного позиционирования однотипных модулей, представленная как совокупность занятых ими решеточных комплексов S(LC)i.
В качестве основы для формирования локальной структуры для соответствующей группы модулярных структур может быть выбран структурный модуль M с определенной конфигурацией, симметрией G30 и топологией граничных элементов. Процедура первой стадии формирования локальной структуры определяется соответствующим законом транскрипции T||i||,m:
Rloc = R30(Tim),
а процедура размножения данной локальной структуры в 3D пространстве с образованием определенной модульной структуры R33 - эволюционным законом E||k||:
R33 = Rloc(Ek) = R33(Tim, Ek).
Символьное описание действия указанного выше закона транскрипции может быть представлено в виде кода локальной структуры: Rloc = R30(Tim) = R30{M(G30)(||i||,m)}, а совместное действие законов транскрипции и эволюции - в виде кода 3D трижды периодической модулярной структуры:
R33 = Rloc(Ek) = R33(Tim, Ek) =
= R33{M(G30)(||i||,m, ||k||)}[S(LC)i (G33(z))].
В данном описании структуры использованы несколько новых символов. Символ ||i|| - матрица индексов ветвления модуля М, которая определяется его конфигурацией и топологией, согласованной с формой ячеек структурированного 3D пространства. В случае полиэдрических ячеек возможные ветвления определяются количеством его вершин (iv), ребер (ir) и граней (ig), т.е. ||i|| = (iv, ir, ig). Символ m [0, 1, 2, ...] - целочисленный индекс, характеризующий размерный параметр локальной структуры и численно равный количеству модулей-звеньев между ядрами в ветвях структуры. В связи с этим относительное расстояние между ближайшими ядрами (период идентичности) в единицах размерного параметра модуля М в направлениях ветвлений равно (m + 1). Отметим, что при равномерном росте локальной структуры во всех направлениях данный параметр является постоянным и характеристическим параметром для определенной группы модулярных структур. Символ ||k|| - матрица индексов ветвления вторичных ядер, изоморфная матрице индексов ветвления ||i||. Условие равенства элементов матрицы ||k|| элементам матриц ||(i-1)||, ||(i-2)|| или ||(i-3)|| соответствует выполнению трансляционной процедуры в выбранном направлении.
Таким образом, проблема формирования структурного модуля, предназначенного для модулярного дизайна, может быть решена по-разному в зависимости от структурированности 3D пространства. Для структурированного пространства решение основано на использовании известного алгоритма выбора характеристического модуля с последующим его целенаправленным модифицированием несколькими способами. Для неструктурированного пространства необходимо предварительно использовать методы структурного моделирования или методы разбиения на пространственные ячейки с последующим вложением в них определенных структурных фрагментов.
Список литературы
-
Ferraris G., Makovicky E., Merlino S. Crystallography of modular structures. IUC Oxford Science Publications. - 2008. - 370 p.
-
Иванов В.В., Таланов В.М. Принцип модулярного строения кристаллов // Кристаллография. - 2010. - Т.55, № 3. - С. 385-398.
-
Иванов В.В., Таланов В.М. Алгоритм выбора структурного модуля и модулярный дизайн кристаллов // Журнал неорганической химии. - 2010. -Т.55, № 6. -С. 980-990.
-
Иванов В.В. Комбинаторное моделирование вероятных структур неорганических веществ. - Ростов-на-Дону: Изд-во СКНЦ ВШ, 2003. - 204 с.
-
Иванов В.В., Таланов В.М. Модулярное строение наноструктур: Информационные коды и комбинаторный дизайн // Наносистемы: Физика, Химия, Математика. - 2010. - Т.1, №1. - С. 72-107.
-
Лорд Э.Э., Маккей А.Л., Ранганатан С. Новая геометрия для новых материалов. - М.: Физматлит, 2010. - 264 с.
-
Урусов В.С. Теоретическая кристаллохимия. - М.: МГУ, 1987. - 276 с.
-
Иванов В.В., Таланов В.М., Гусаров В.В. Информация и структура в наномире: модулярный дизайн двумерных наноструктур и фрактальных решеток. Наносистемы: Физика, Химия, Математика. -2011. - Т.2, № 3. - С. 121-134.
- Иванов В.В., Шабельская Н.П., Таланов В.М., По- пов В.П. Итерационный модулярный дизайн двумерных наноструктур // Успехи современного естествознания. - 2012. - №2. - С. 60-63.