Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,791

SYSTEM Tl2S-Tl2Te-Tl9SbTe6 AND COMPARATIVE ANALYSIS OF THE PHASE DIAGRAM RELATED SYSTEMS

Jafarov Y.I. 1
1 Baku State University
By DTA and XRD methods the phase equilibria in the Tl2S-Tl2Te-Tl9SbTe6 (A) are studied. The polythermal section Tl2S-Tl9SbTe6 and isothermal section at 400 K of the phase diagram, as well as the projection of the liquidus surface of the system A is constructed. It is shown that system A is a fragment of the quaternary system Tl-Sb-S-Te and is characterized by the formation of wide areas of solid solutions based on initial compounds. Liquidus surface of the system A consists of three fields of the primary crystallization of solid solutions based on compounds Tl2S, Tl2Te and Tl9SbTe6. The paper also discussed the features of the phase equilibria in similar systems and, in particular, it is shown that all the six systems of this type are characterized by the formation of solid solutions based on initial compounds, with the most extensive area of homogeneity are compounds such Tl9BVX6
phase diagram
tellurides thallium-antimony
sulfides thallium-antimony
solid solutions

Многокомпонентные халькогениды металлов и нестехиометрические фазы на их основе являются перспективными полупроводниковыми материалами с разнообразными функциональными свойствами. В частности, многие теллуриды и селениды тяжелых р-элементов (AIV, TlBVX2, Tl9BVTe6, AIVB2X4 и др.) привлекают внимание исследователей как матричные соединения для разработки термоэлектрических материалов и трехмерных топологических изоляторов [6, 10].

Поиск и создание физико-химических основ получения новых многокомпонентных халькогенидных фаз требует изучения фазовых равновесий в соответствующих системах. В случае четверных и более сложных систем особый интерес представляют их фрагменты, включающие известные двойные и тройные соединения – аналоги, так как в них можно ожидать образования широких областей твердых растворов.

Ранее нами были изучены некоторые четверные системы типа Tl-BV-X-X′ (X, X′-S, Se, Te) по концентрационным плоскостям Tl2X-Tl2X′-B2-B2X3, построены их Т-х-у фазовые диаграммы [3–5].

Целью данного исследования является установление характера фазовых равновесий в системе 6Tl2S-6Tl2Te-Tl9SbTe6 (А) и сопоставление его с аналогичными системами.

Физико-химические характеристики исходных соединений системы А приведены в [7-9]. Соединения Tl2S, Tl2Te, Tl9SbTe6 плавятся конгруэнтно при температурах 723, 698, 800 К соответственно. Структура Tl2S ромбоэдрическая (антитип CdI2): a = 12,22; c = 18,21 Å, пр. гр. Eqn4.wmf [7]. Соединение Tl2Te кристаллизуется в моноклинной структуре с параметрами a = 15,662; b = 8,987; c = 31,196 Å; b = 100,761°; r = 9,084; z = 44, пр.гр. C2/C [8]. Tl9SbTe6 имеет тетрагональную решетку с параметрами a = 8,828; c = 13,001 Å; z = 2, Пр.гр. I4/m [9].

Граничные квазибинарные составляющие исследуемой системы − Tl2S-Tl2Te и Tl2Te-Tl9SbTe6 исследованы в работах [1, 2]. Система Tl2S-Tl2Te [1] является квазибинарной, эвтектического типа с ограниченными твердыми растворами на основе исходных соединений. Система 6Tl2Te-Tl9SbTe6 [2] характеризуется неограниченной взаимной растворимостью компонентов в жидком и твердом состояниях и образует диаграмму состояния без точек экстремума на кривых ликвидуса и солидуса. Однако, так как соединения Tl2Te и Tl9SbTe6 отличаются по своей кристаллической структуре, они не могут образовывать непрерывные твердые растворы. Изучая некоторые зависимости «состав-свойство» в системе 6Tl2Te-Tl9SbTe6 авторы [2] пришли к выводу, что при составе ~20 мол. % Tl9SbTe6 происходит морфотропный фазовый переход и двухфазная область между твердыми растворами на основе исходных соединений практически вырождена.

Материалы и методы исследования

Для проведения исследований исходные соединения Tl2S, Tl2Te, Tl9SbTe6 синтезировали сплавлением элементарных веществ высокой степени чистоты, взятых в стехиометрических соотношениях, в эвакуированных до 10–2 Па кварцевых ампулах.

После установления индивидуальности синтезированных исходных соединений методами дифференциального термического (ДТА) и рентгенофазового (РФА) анализов были приготовлены сплавы системы А сплавлением соответствующих соединений в эвакуированных кварцевых ампулах. По данным ДТА литых негомогенизированных образцов были выбраны температурные режимы термического отжига сплавов (550–570 К), при которых их выдерживали в течение 800 ч.

Отожженные сплавы были исследованы методами ДТА (пирометр НТР-70, хромель-алюмелевые термопары) и РФА (порошковый дифрактометр D8 ADVANCE фирмы Bruker).

Результаты исследования и их обсуждение

Совместный анализ экспериментальных результатов по граничной системе Tl2S-Tl9SbTe6 и ряда сплавов внутри концентрационного треугольника А, а также литературных сведений по граничным квазибинарным системам Tl2S(Tl9SbTe6)-Tl2Te [1, 2] позволили построить полную Т-х-у-диаграмму системы А.

Ниже представлены Т-х-диаграмма граничной системы Tl2S-Tl9SbTe6 (рис. 1), изотермическое сечение при 400 К фазовой диаграммы и проекция поверхности ликвидуса (рис. 2) системы А.

pic_30.tif

Рис. 1. Политермический разрез 6Tl2S-Tl9SbTe6

Политермический разрез 6Tl2S-Tl9SbTe6 (см. рис. 1) является практически квазибинарным. Диаграмма состояния системы относится к эвтектическому типу с ограниченными твердыми растворами (a- и g-) на основе исходных соединений. Эвтектика имеет состав 42 мол % Tl9SbTe6 и плавится при температуре 595 К. a- и g-фазы имеют максимальную область гомогенности при эвтектической температуре (5 и 18 мол % Tl9SbTe6 соответственно). С уменьшением температуры области гомогенности a- и g-фазы сужаются и при температуре 400 К соответственно составляют 3 и 11 мол %.

Изотермическое сечение фазовой диаграммы при 400К (рис. 2а) показывает, что в твердом состоянии система А характеризуется образованием широких областей четырехкомпонентных a-, β- и g-фаз переменного состава на основе Tl2S, Tl2Te и Tl9SbTe6 соответственно. Установлено, что a-фаза расположена в виде полосы шириной до ~2 мол % и длиной ~5 мол % вдоль граничной системы Tl2S-Tl2Te. β- и g-фазы проникают вглубь системы А на ~10 мол % и 13 мол %. Двухфазная область между β- и g-фазами вырождена.

Поверхность ликвидуса системы А (рис. 2б) состоит из трех полей, отвечающих первичной кристаллизации фаз a, β и g. Эти поля разграничены кривыми e1U, pU и Ue2 с моновариантными равновесиями

L ↔ a + β (608 – 605 К); (1)

L + g ↔ β (700 – 605 К); (2)

L ↔ a + g (605 – 595 К) (3)

соответственно. Перитектическое равновесие (2) является вырожденным, так как составы β- и g-фаз практически совпадают. При 605 К в системе устанавливается имеется четырехфазное равновесие

L + β ↔ a + g, (4)

вырожденное по той же причине.

Таким образом, в системе А на основе соединения Tl9SbTe6, обладающего термоэлектрическими свойствами, образуется широкая область твердых растворов, что открывает возможность варьрования его состава и свойств.

pic_31.tif

Рис. 2. Изотермическое сечение фазовой диаграммы при 400 К (а) и поверхность ликвидуса (б) системы А. Поля первичной кристаллизации:1 – a; 2 – β; 3 – g

Наличие экспериментальных данных по всем системам Eqn5.wmf (X-S, Se; X′-Se, Te; BV-Sb, Bi). позволяет провести сравнительный анализ их фазовых диаграмм. Как видно из рис. 3а-е, все шесть систем данного типа характеризуются образованием твердых растворов на основе исходных соединений, причем наиболее широкие области гомогенности имеют соединения типа Eqn6.wmf.

Нетрудно заметить, что характер твердофазных равновесий в S-Se и S-Te системах качественно аналогичен (рис. 3а-г). В этих системах области гомогенности a-фаз на основе Tl2S имеют вид узких (шириной не более 2 мол %) полос вдоль граничных систем Tl2S-Tl2Se(Te). В трех из четырех S-Se и S-Te систем a-фазы находятся в коннодной связи не только с β- и g-фазами, но и с соединениями Tl3SbS3 (рис.3а) и Tl4Bi2S5 (рис. 3б,г). В системе же 6Tl2S-6Tl2Te-Tl9SbTe6 боковая составляющая 6Tl2S-Tl9SbTe6 практически квазибинарна (рис. 1). Поэтому данная система является квазитройной.

С другой стороны, в этих системах (рис. 3 а-г) области гомогенности b- и g- фаз на основе Tl2Se(Te) и Tl9BVSe6(Te6) значительно проникают вглубь концентрационного треугольника и образуют широкие поля гомогенности. Следует отметить, что в граничных системах Tl2Se(Te)-Tl9BVSe6(Te6) двухфазные области b + g практически вырождены и переходы b « g имеют характер морфотропного фазового перехода [2]. Эта тенденция сохраняется и в соответствующих квазитройных системах. Из четырех систем (рис. 3а-г) только в одной (рис. 3г) выявлена узкая двухфазная b + g область. Взаимодействие a-фазы с b- и g-фазами приводит к формированию широких двухфазных областей a + b и a + g. Трехфазные области a + b + g за исключением системы Tl2S-Tl2Te-Tl9BiTe6, вырождены (рис. 3а-в, пунктиры).

pic_32.tif

Рис. 3. Диаграммы твердофазных равновесий в системах (X-S, Se; X’-Se, Te; BV-Sb, Bi)

Характерной особенностью Sе-Te систем (рис. 3д-е) является то, что в них области гомогенности на основе исходных соединений практически полностью охватывают соответствующие концентрационные треугольники. Двухфазные области a + b, исходящие от граничной системы Tl2Se-Tl2Te непрерывно сужаются в направлении боковых систем Tl2Te-Tl9BVТe6 и вырождаются у них. Другой интересной особенностью Sе-Te систем является вырождение двухфазных равновесий a ↔ g в морфотропный фазовый переход (рис. 3д-е, пунктиры). Это связано с тем, что соединения Tl2Se, Tl9SbTe6 и Tl9BiTe6 имеют тетрагональные кристаллические структуры типа Tl5Te3 (I4/mcm) или производные от него с очень близкой симметрий (I4/m, P4/ncc) и параметрами решетки [2, 7, 9].