Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

AN OPTIMIZATION DECISION SUPPORT SYSTEM IN BUSINESS PLANNING

Medvedev A.V. 1
1 Russian Economic University named after G.V. Plekhanov
2476 KB
This article describes some problems, the system concept and tools of simulation and analysis tasks of business planning in the form of a triad: a mathematical model, the operating method of their research and automated information-analytical system. The main features of the concept are the use of complex algorithms for constructing the production functions of business processes that take into consideration the basic accounting rules of income and expenses accounting, the conceptual focus on the use of standard mathematical models of optimization in the form of multi- and single-step multiobjective linear optimal control problem and corresponding algorithms and methods of their analysis and calculation. It is concluded the creation of a complete decision support system in business planning.
optimization method
multi-step linear optimal control problem
the automated information-analytical system
decision support system

Использование автоматизированных средств и систем поддержки принятия решений в бизнес-планировании являются важнейшими факторами успеха в бизнесе. Они позволяют предпринимателю, бизнесмену или экономисту-аналитику давать оперативную и обоснованную оценку стоимости и разрабатывать сценарии развития своего бизнеса, экономя, в первую очередь, драгоценное время при принятии инвестиционных, производственных и финансовых решений.

Принятие решений в сфере бизнес-планирования практически затруднено из-за многообразия и сложности требующих учета бизнес-процессов – инвестиционного, производственного, финансового, управленческого и пр., а также многочисленности характеристик внешнего и внутреннего рыночного окружения бизнес-проекта. Это ставит перед принимающим решения лицом (ЛПР) сложные задачи, эффективное решение которых невозможно без использования системного подхода, под реализацией которого в данном случае будем понимать наличие следующих инструментов:

– математических моделей, адекватно отражающих содержательную сторону бизнес-процессов;

– методов и алгоритмов анализа указанных математических моделей, допускающих автоматизированную обработку извлекаемой из них информации;

– программных комплексов, численно реализующих указанные методы и алгоритмы анализа и дающих возможность ЛПР обрабатывать и представлять полученную информацию в автоматизированном режиме.

Будем называть перечисленный комплекс средств системой поддержки принятия решений (СППР).

Первоочередной задачей в планировании бизнес-процессов является оценка их экономической эффективности. В большинстве современных работ в данной области для построения критериев эффективности используются агрегированные функционалы качества (производственные функции (ПФ), функции благосостояния, полезности, отражающие различные содержательные аспекты деятельности экономических агентов – максимизацию прибыли, выпуска продукции или конечного потребления, минимизацию производственных затрат и других показателей. Указанные функционалы качества, как правило, строятся на основе использования содержательно идеализированных математических зависимостей, которые, отражая в целом теоретические закономерности экономических теорий полезности, спроса и предложения, благосостояния, зачастую не устраивают экономистов-практиков, так как реальные зависимости значений функционалов качества от используемых экономических ресурсов (труд, капитал, финансы и пр.) на практике редко совпадают с зависимостями, описываемыми указанными функциями. Кроме того, такая идеализация:

– существенно ограничивает возможности учета информации микроэкономического уровня при расчете доходных и расходных составляющих бизнес-процессов;

– не позволяет использовать понятные для целевой аудитории алгоритмы обработки и представления информации бизнес-процессов;

– затрудняет разработку удобных для целевой аудитории автоматизированных программных средств поддержки принятия решений в управлении бизнес-процессами.

Пусть деятельность производителя продукции (товаров и/или услуг) описывается, выраженными в стоимостном виде, материальными и финансовыми потоками стратегического (прибыль, инвестиции) и тактического (выручка от продажи продукции, амортизация, фонд оплаты труда, налоги, оборотные затраты, кредиты, дотации и пр.) характера. Предположим, кроме того, что организационную деятельность производителя можно разделить на три составляющие [5]:

– инвестиционная (учет потоков, обусловленных функционированием основных производственных фондов (ОПФ),

– производственная (учет выручки, затрат на амортизацию ОПФ, оплату труда, сырья и материалов, энергии и т.п.)

– финансовая (учет кредитов, налогов, сборов, дотаций и других доходно-расходных финансовых потоков).

Алгоритм преобразования ресурсов (труд (L), капитал (K), финансы (Ф)) в экономический результат (прибыль, чистую приведенную стоимость и др.) называется производственной функцией (ПФ). Построение универсальной ПФ, понимаемой в смысле ее независимости от типа (производство товаров/услуг) или специфики (отрасль хозяйства, сфера приложений) производственной деятельности, является важной задачей при ее моделировании, так как дает возможность дать численную оценку эффективности и учесть максимально большое количество бизнес-процессов. В качестве ПФ, для простоты, часто используются различные идеализированные математические функции, например, линейные (Э(K, L) = αK + βL), иррациональные (Э(K, L) = γKαL1-α, 0 < α < 1) и даже трансцендентные (например, логистическая) функции. Однако, как было упомянуто выше, это зачастую не устраивает экономистов-практиков. В этой связи ниже приводится краткий алгоритм расчета ПФ, применимый в случае оценки эффективности производства как товаров, так и услуг, согласованный с принятыми в Российской Федерации основными бухгалтерскими правилами учета доходов и затрат, который получил поддержку экономистов-практиков и апробирован при решении многочисленных задач бизнес-планирования [1, 3].

Обозначим ОП(t) – объем производства, СС(t) – собственные средства производителя, ОС(t) – оценка остаточной стоимости имущества, Д(t) – оценка доходов, Р(t) – оценка расходов, И(t) – инвестиции, П(t) – чистая прибыль,. Тогда в предположении, например, что инвестиции тратятся только на капитальный ресурс (И = К), получим следующие выкладки:

Д = F(ОП), З = F1(К, ОП) + F2(L, ОП),

П = (Д – З)×

× (1–{ставка налога на прибыль}),

ОС = F3(К),

и производственную функцию можно выразить, например, в следующем виде:

Э(K, L) = d1*П + d2*ОС – d3*И,

где d1,d2,d3 – дисконтирующие множители, учитывающие общеэкономический закон обесценения финансовых потоков во времени;

Ключевое для реализации любого бизнес-проекта требование платежеспособности производителя можно описать неравенством СС ≥ 0, где СС = П + F4(Ф) – И.

Здесь функции F, F1, F2 описывают производственную деятельность, F3 – остаточную стоимость с учетом амортизационных затрат, F4 – финансовую деятельность.

Выделим далее, вообще говоря, аксиоматическое положение, что алгоритмы расчета показателей финансово-хозяйственной деятельности фирмы могут достаточно корректно, без существенной потери точности моделирования, описываться линейными функциями F, F1, F2, F3, F4.

Это положение, в частности, является важным аргументом для дальнейшей реализации системно-аналитической концепции моделирования, так как позволяет использовать хорошо разработанные методы и алгоритмы численного анализа линейных моделей оптимизации при практически значимых размерностях искомых переменных, определяемых количеством видов продукции и содержательных ограничений в моделируемых бизнес-процессах.

Исходя из указанного положения о линейности функций F, F1, F2, F3, F4, будем строить задачу бизнес-планирования в форме многокритериальной, многошаговой задачи линейного программирования (ММЗЛП) вида:

x(t + 1) = A(t)x(t) + B(t)u(t); x(t) = a;

C(t)x(t) + D(t)u(t) ≤ h(t); u(t) ≥ 0

(t = 0,…,T – 1); (1)

med01.wmf,

med02a.wmf

med02b.wmf,

где u(t) = [ul(t)] и x(t) = [xi(t)] – соответственно управляющий и фазовый векторы; матрицы A(t) = [aij(t)]; B(t) = [bil(t)]; C(t) = [ckj(t)]; D(t) = [dik(t)]; векторы a(t) = [ai(t)]; b(t) = [bl(t)]; s(t) = [si(t)]; h(t) = [hk(t)]; (i, j = 1,…,n; l = 1,…,r; k = 1,…,m; t = 0,…,T); Jν – ν-тый целевой критерий (ν = 1,…,K); K – количество критериев; r, m, T – размерность управляющего вектора, число ограничений и временных шагов соответственно; (α0,β0) – скалярное произведение векторов α0, β0; n – количество видов продукции.

В соответствии с основными учитываемыми бизнес-процессами, разделим фазовые и управляющие переменные, а также ограничения в (1) на инвестиционные, производственные и финансовые. В таблице отражена информация о взаимодействии ограничений и переменных в математических моделях экономических систем, многочисленные реализации которых описаны в работах [2, 6]. Тонированные клетки в таблице указывают, какие переменные задействуются в соответствующих ограничениях математических моделей.

 

Mатрица взаимодействия «ограничения-переменные»

Ограничения

Переменные

Инвестиционные (И)

Производственные (П)

Финансовые (Ф)

Управляющие (УИ)

Фазовые

(ФИ)

Управляющие (УП)

Фазовые

(ФП)

Управляющие (УФ)

Фазовые

(ФФ)

Инвестиционные (ОИ)

           

Производственные (ОП)

           

Финансовые (ОФ)

           

Переменные в таблице имеют следующий содержательный смысл. УИ – инвестиции в текущий момент времени на приобретение комплекта основных производственных фондов (ОПФ), ФИ – накопленные инвестиции в ОПФ; УП – суммарная стоимость реализованной продукции в текущий момент времени, ФП – накопленные амортизационные отчисления, стоимость реализованной продукции; УФ и ФФ – стоимостное выражение (соответственно, в текущий момент и накопленных) потоков кредитов, депозитов, дотаций и других финансовых инструментов. Ограничения, описывающие функционирование производителя, имеют следующий содержательный смысл. Уравнения: динамика фазовых переменных ФИ, ФП, ФФ. Неравенства: ОИ – по суммарному объему инвестиций, ОП – по фондоотдаче ОПФ и по спросу на продукцию, ОФ – по суммарному стоимостному выражению объемов финансовых инструментов.

В работе [2], в частности, обоснована возможность математически корректного превращения задачи (1), путем применения к векторам x(t) и u(t) (доопределенным нулевыми компонентами на бесконечном горизонте планирования) z-оператора:

med03.wmf,

med04.wmf (2)

в многокритериальную статическую, z-параметрическую задачу линейного программирования:

(k)c1×2n·X2n×1(z) → max,

AL×2n·X2n×1(z) ≤ bL×1, (k = 1,…, K) (3)

где L – количество ограничений (требования платежеспособности, ограниченность выручки спросом или фондоотдачей ОПФ, ресурсные ограничения и пр.), описывающих конкретный вид производственной деятельности, bL×1 – вектор-столбец правых частей ограничений, c1×2n – вектор-строка коэффициентов целевой функции, AL×2n – матрица коэффициентов ограничений. Отметим, что здесь z = 1 + r, где параметр r имеет естественный экономический смысл ставки дисконтирования инвестиционного проекта.

Отметим, что в задаче (3) принципиально сохраняется классификация переменных и ограничений таблицы, но модифицируется их структура (устраняется деление переменных на фазовые и управляющие), а также содержательная трактовка. А именно, инвестиционные переменные трактуются как суммарная стоимость ОПФ (суммарные инвестиции), а производственные переменные – как суммарная стоимость произведенной продукции на всем горизонте планирования. Кроме того, задача (3) сохраняет некоторые основные качественные свойства исходной динамической задачи (1): оптимальные пропорции инвестиций, выпусков продукции, структуру, параметрические зависимости Парето-множеств и т.п. [2]. Помимо указанного преимущества, применение операционного метода позволяет значительно упростить процедуру доказательства существования решения исходной динамической задачи. Полученная статическая задача допускает эффективный численный анализ и может быть решена для практически значимых размерностей, определяемых в экономических системах, прежде всего, количеством видов производимой продукции и учитываемых ограничений.

Использование указанных в таблице переменных, наряду с возможностью определения их оптимальных значений, позволяет:

● рассчитывать основные показатели финансово-хозяйственной деятельности фирмы: потоки прибыли, амортизации, оплаты труда, кредитов, штрафов, основные виды налогов и сборов и т.п.;

● описывать ограничения функционирования производителя, связанные с его производственными, инвестиционными и финансовыми возможностями: платежеспособность, ограниченность выпуска спросом на продукцию и возможностями ОПФ, кредитно-депозитные, страховые, дотационные и другие ограничения.

Описанный подход к моделированию процессов бизнес-планирования, в части использования математического класса задач, алгоритмов расчета доходных и расходных бизнес-потоков, классификации переменных, применения операционного метода и других элементов концепции, позволил построить и проанализировать многочисленные модели экономических систем (см. обзоры [3, 4]). При этом, с учетом линейности моделей (1), (3), возникает реальная возможность на практике разрабатывать пакеты программ для автоматизированного ввода-вывода и оптимизационного анализа информации об основных бизнес-процессах в формате, устраивающем конечного пользователя – экономиста-практика, финансового аналитика, предпринимателя.

Большинство используемых в настоящее время программных продуктов в сфере бизнес-планирования (ProjectExpert, Альт-инвест, ИНЭК-Аналитик и др.) базируются на имитационных моделях деятельности предприятий, аналитической основой которых выступают системы дифференциальных, разностных или алгебраических уравнений и неравенств, описывающих бизнес-потоки и ограничения их функционирования. Имитационные модели характеризуются высоким уровнем детализации материальных и финансовых потоков предприятия, однако, не решая задач оптимального управления, обладают следующими, существенными для бизнес-планирования, недостатками:

1) не предназначены для получения оптимальных значений показателей эффективности и, тем самым, оценки потенциала деятельности предприятий;

2) как правило, требуют большого количества численных реализаций параметров модели только для того, чтобы «нащупать» квазиоптимальные значения переменных и показателей эффективности, не гарантируя, вообще говоря, даже приближения к ним.

Напротив, использование оптимизационных моделей (1),(3), позволяет решать важные задачи в сфере экономического планирования и прогнозирования бизнес-процессов, не доступные при использования имитационных моделей, и, в первую очередь, задачи определения потенциалов бизнес-потоков. Модели (1),(3) легли в основу решателя программного комплекса [7], имеющего встроенные блоки занесения и контроля входной информации, графического, многопараметрического и многокритериального анализа. Основные результаты использования [7] приведены в обзорах [3, 4].

Описанный в данной работе подход успешно реализован при анализе бизнес-проектов как товарного производства (в том числе инновационного), так и производства услуг коммерческого характера. В настоящее время разработанная система поддержки принятия решений развивается в направлении конечного пользователя – предпринимателя, бизнес-аналитика, управленца регионального уровня – дополняясь блоками автоматизированной предобработки (автоматизированного внесения информации в пакет), а также постобработки полученной при решении информации.

Таким образом, полученный опыт реализации системного подхода к решению и анализу задач бизнес-планирования, включающий их математическое моделирование в форме ММЗЛП, теоретический и численный анализ, автоматизированную информационно-аналитическую систему на основе программного комплекса [7], дает основание говорить о практической реализации комплексной оптимизационной системы поддержки принятия решений в бизнес-планировании.