В настоящее время остается актуальной проблема поиска новых эффективных противоопухолевых средств. Перспективным направлением является наномедицина, одной из задач которой является разработка противоопухолевых средств в форме наноразмерных структур [6]. Большое внимание уделяется исследованию агентов на основе переходных металлов. Хотя безопасность металлических наночастиц для организма окончательно не определена, они все более широко используются в медицине. Немалое количество исследований посвящено изучению новых комплексных соединений на основе железа [7]. В частности показано, что комплексные железосодержащие производные пиридила обладают большей, по сравнению с платиной и блеомицином, цитотоксичностью и устойчивостью в физиологических условиях [10]. Активно обсуждается вопрос о связи железосодержащих веществ и белков, участвующих в регуляции метаболизма железа, с процессами клеточной пролиферации, дифференцировки, клеточной гибели, иммунитета, а также о роли эндогенного железа в формировании чувствительности опухоли к химио- и радиотерапии [5].
В то же время имеются данные о потенциальной токсичности наночастиц, содержащих железо [9]. Благодаря малым размерам металлы в форме наночастиц легче вступают в химические реакции в организме и обладают большей биологической активностью, чем соли металлов, но в связи с этим наночастицы могут вызывать и более значимые токсические повреждения в органах и тканях. Органы-мишени и механизмы развития токсического эффекта разнообразны и зависят от физических и размерных характеристик наночастиц, а также биологической модели исследования [1, 8]. Показано, что сферические наночастицы биогенных металлов, в том числе железа, диаметром частиц 20–50 нм, полученные плазмохимическим методом, при их пероральном введении мышам оказывают влияние на обмен углеводов, липидов и белков, снижают устойчивость эритроцитов к гемолизу, вызывают сывороточную гиперферментемию, указывающую на повреждение гепатоцитов [2].
Целью данной работы явилось изучение влияния наночастиц железа на уровень эндогенной интоксикации в крови здоровых животных и животных с лимфосаркомой Плисса при разной эффективности их действия на рост опухоли.
Материалы и методы исследования
В качестве экспериментальной модели использовали крыс, которым была перевита лимфосаркома Плисса (ЛСП), характеризующаяся быстрым агрессивным ростом с тенденцией к инвазии в окружающие ткани, прорастанием забрюшинной клетчатки, гематогенным метастазированием и некротизацией, а также сниженной чувствительностью к цитостатикам. Штамм ЛСП получен из банка опухолевых штаммов ФГБНУ «РОНЦ им. Н.Н. Блохина». Всего в исследовании было использовано 104 нелинейные крысы-самцы массой 250–300 г.: 67 животных с ЛСП, разделенных на опытную группу из 44 крыс, которым вводили наночастицы (НЧ) железа, и контрольную группу – 23 крысы без введения НЧ, и 37 интактных крыс, из которых 10 вводили НЧ железа. Использовали нанопорошки железа, полученные из крупнодисперсных порошков с помощью плазменной технологии, основанной на испарении сырья (крупнодисперсного порошка или прутка) в плазменном потоке с температурой 5000–6000 К и конденсации пара до ультрадисперсных частиц требуемого размера (дисперсность частиц 30–50 нм). Исследование методом рентгеновской спектроскопии на основе анализа тонкой структуры спектров рентгеновского поглощения в области края поглощения (XANES – X-ray absorption near edge spectroscopy) показало, что НЧ представляли собой металлическое железо в оксидной оболочке и не окислялись в 0,9 % NaCl [2].
НЧ железа суспендировали в физиологическом растворе непосредственно перед использованием и вводили животным 8-кратно по 4 введения в неделю с 5-дневным перерывом после 4 введения (основная группа). Разовая доза НЧ составила 1,25 мг/кг массы, курсовая – 10 мг/кг. Использовали два способа введения НЧ: локально в опухоль и внутрибрюшинно. В контрольной группе животным-опухоленосителям внутрибрюшинно вводили 0,9 % раствор хлорида натрия (по 0,3 мл). Введение НЧ начинали при достижении размеров опухоли в среднем 1,01 ± 0,14 см3 (от 0,16 до 2,8 см3). Забой большинства животных осуществляли на 21–25 сутки после перевивки опухоли. Критериями оценки влияния НЧ железа на рост экспериментальных опухолей служили: индекс эффективности (ИЭ) и процент торможения роста опухоли (по объему опухоли – Тv %, по массе опухоли – Тm %). Для выявления возможного влияния НЧ железа на развитие эндогенной интоксикации в организме здоровых животных в исследование была включена группа крыс без опухоли (группа сравнения), которая получала внутрибрюшинные инъекции взвеси наночастиц в указанных выше дозах по аналогичной схеме.
Биохимические исследования были проведены у 19 животных контрольной группы и 24 животных основной группы, из которых 16 животных были выведены из эксперимента на 21–25 сутки после перевивки опухоли и 8 животных с полной регрессией ЛСП после введения наночастиц железа наблюдались в течение 3,5 месяцев после перевивки опухоли, а также у 10 животных без опухоли после введения наночастиц и 20 интактных крыс.
Для оценки эндогенной интоксикации изучены: уровень молекул средней массы (МСМ254 и МСМ280), общая (ОКА) и эффективная (ЭКА) концентрации альбумина, рассчитаны связывающая способность альбумина (ЭКА/ОКА×100 %), индекс токсичности (ОКА/ЭКА – 1) и коэффициент интоксикации (МСМ254/ЭКА×1000) [4].
Статистическую обработку результатов проводили с использованием пакета программ Statistika 6.0, используя критерии Фишера и Стьюдента для оценки значимости различий двух независимых выборок. Отклонения между рядами оценивали как значимые при вероятности различий, превышающих 95 % (p < 0,05 – p < 0,001), а при 0,1 > p > 0,05 считали, что различия обнаружены на уровне статистической тенденции.
Результаты исследования и их обсуждение
У животных с ЛСП при введении НЧ железа полная регрессия опухоли наблюдалась в 50 % случаев (при внутриопухолевом введении у 14 из 20 животных, при внутрибрюшинном введении – у 8 из 24 животных), торможение роста у 4,5 % животных (n = 2), рост опухоли у 45,5 % животных (n = 20). Процент торможения роста лимфосаркомы Плисса в целом по группе составил: Тv % – 65,2 %, Тm % – 53,7 %; ИЭ – 2,79. При этом интратуморальное введение наночастиц железа оказалось более эффективным (р ≤ 0,05 по Фишеру) – полная резорбция опухоли наблюдалась в 70 % случаев, тогда как при внутрибрюшинном введении только у 33 % крыс. Таким образом, с использованием большого количества животных была подтверждена эффективность разработанного нами способа торможения роста опухоли путем введения наночастиц железа [3].
Исследование показателей эндогенной интоксикации (таблица) показало, что в контрольной группе (опухоленосители без введения наночастиц железа) у животных с лимфосаркомой Плисса имело место снижение эффективной концентрации альбумина и его связывающей способности на 50,2 и 37,6 % соответственно относительно средних значений у интактных животных.
Влияние введения наночастиц железа на показатели эндогенной интоксикации в плазме крови крыс с лимфосаркомой Плисса
Показатель |
Интактные животные n = 20 |
Группа сравнения n = 10 |
Контрольная группа (ЛСП) n = 18 |
Введение наночастиц железа при ЛСП |
|||
ЛСП + НЧ железа n = 16 |
Рост опухоли (27–120 г) n = 4 |
Регрессия опухоли (0–0,03 г) n = 12 |
Через 3,5 месяцев (отсутствие рецидивов) n = 8 |
||||
ОКА (г/л) |
43,86 ± 1,30 |
38,35 ± 0,57 р < 0,02 |
35,44 ± 1,24 р < 0,001 |
27,13 ± 1,25 р < 0,001 рк < 0,001 |
26,40 ± 1,10 р < 0,001 рк < 0,01 |
27,37 ± 1,65 р < 0,001 рк < 0,001 |
35,33 ± 0,98 р < 0,01 р2 < 0,01 |
ЭКА (г/л) |
28,46 ± 1,77 |
23,98 ± 2,28 |
14,17 ± 1,56 р < 0,001 |
22,59 ± 1,40 р < 0,05 рк < 0,001 |
23,45 ± 1,76 рк < 0,02 |
22,30 ± 1,81 р < 0,05 рк < 0,01 |
28,55 ± 1,69 р2 < 0,05 |
ССА (%) |
64,56 ± 3,38 |
63,1 ± 6,1 |
40,30 ± 4,40 р < 0,001 |
81,70 ± 1,66 р < 0,001 рк < 0,001 |
88,55 ± 2,92 р < 0,01 рк < 0,001 |
79,42 ± 1,53 р < 0,01 рк < 0,001 р1 < 0,02 |
80,45 ± 2,91 р < 0,02 |
ИТ |
0,656 ± 0,071 |
0,692 ± 0,159 |
2,049 ± 0,341 р < 0,001 |
0,221 ± 0,025 р < 0,001 рк < 0,001 |
0,135 ± 0,038 р < 0,01 рк < 0,02 |
0,250 ± 0,027 р < 0,001 рк < 0,001 р1 < 0,05 |
0,253 ± 0,041 р < 0,01 |
МСМ254 (у.е.) |
0,262 ± 0,007 |
0,250 ± 0,013 |
0,269 ± 0,010 |
0,242 ± 0,011 |
0,285 ± 0,001 |
0,228 ± 0,011 р < 0,02 рк < 0,02 р1 < 0,02 |
0,231 ± 0,008 р < 0,02 |
МСМ280 (у.е.) |
0,215 ± 0,014 |
0,209 ± 0,004 |
0,197 ± 0,009 |
0,214 ± 0,010 |
0,255 ± 0,007 рк < 0,01 |
0,201 ± 0,010 р1 < 0,01 |
0,211 ± 0,004 |
КИ |
9,99 ± 0,68 |
10,24 ± 0,89 |
23,62 ± 2,94 р < 0,001 |
11,14 ± 0,66 рк < 0,001 |
12,35 ± 0,88 0,05 < рк < 0,1 |
10,74 ± 0,813 рк < 0,01 |
8,281 ± 0,569 р2 < 0,05 |
Примечания: р – статистическая значимость различий по сравнению с группой интактных животных; рк – статистическая значимость различий по сравнению с группой контрольных животных (ЛСП); р1 – статистическая значимость различий между группами с регрессией и ростом опухоли (или торможением роста) при введении наночастиц железа; р2 – статистическая значимость различий между группами животных с регрессией опухоли, выведенных из эксперимента через 21–25 дней и через 3,5 месяца после перевивки опухоли (представлены р только для значимых различий).
При этом общая концентрация альбумина была снижена на 19,2 %. Это привело к увеличению индекса токсичности (ИТ), характеризующего функциональное состояние альбумина (сорбционную способность), в 3,1 раза (на 212,3 %). Уровень молекул средней массы не изменился у животных с ЛСП. Коэффициент интоксикации, отражающий баланс между накоплением и связыванием токсических лигандов, превысил уровень у интактных животных на 136,5 %.
Введение наночастиц железа животным с ЛСП привело к статистически значимому изменению показателей функционального состояния альбумина и коэффициента интоксикации при отсутствии значимых изменений содержания МСМ. Содержание ОКА снизилось на 23,4 и 38,1 % относительно контрольных и интактных животных соответственно, содержание ЭКА увеличилось на 59,4 % относительно контрольной группы до уровня показателя в группе сравнения и оставалось ниже нормы лишь на 20,6 %. Это привело к увеличению ССА и снижению ИТ соответственно на 102,7 % и в 9,3 раза относительно контрольной группы и на 26,5 % и в 3 раза относительно интактных животных. КИ был ниже на 52,8 % (в 2,1 раза) по сравнению с контрольной группой и статистически значимо не отличался от интактных животных. Важно отметить, что были выявлены статистически значимые отличия в связывающей способности альбумина, индексе токсичности и уровне МСМ в зависимости от наличия эффекта введения наночастиц на рост опухоли. При этом даже у животных с продолженным ростом после введения наночастиц железа показатели, отражающие способность альбумина осуществлять связывание токсических продуктов, были значительно выше, чем в контрольной группе: уровень ЭКА – на 61 %, ССА – на 156,5 %, хотя содержание МСМ254 оказалось на том же уровне, что и у животных-опухоленосителей, которым наночастицы не вводились. Однако уровень МСМ254 у животных с ростом опухоли после введения наночастиц железа был статистически значимо выше (на 25 %), чем у животных с полной регрессией опухолевого узла. Уровень среднемолекулярных пептидов (МСМ280) у животных с регрессией опухоли не отличался от значений в контрольной группе, но был значимо ниже (на 21,2 %), чем у животных с продолженным ростом после введения наночастиц железа. При этом парадоксальный, на первый взгляд, факт более высокой потенциальной связывающей способности альбумина и сниженного ИТ при увеличенной концентрации МСМ у животных с ростом лимфосаркомы Плисса после введения наночастиц железа по сравнению с животными с регрессией опухоли позволяет предположить, что у них молекулы альбумина оказались неспособными связывать токсические ингредиенты крови, на что указывает и несколько больший (на 15 %) коэффициент интоксикации в подгруппе с ростом опухоли по сравнению с животными с регрессией.
Важно отметить, что введение наночастиц железа интактным животным не вызывало значимых изменений МСМ, связывающей способности альбумина и коэффициентов, отражающих развитие эндогенной интоксикации. У них было отмечено лишь снижение ОКА на 12,6 % (таблица). Следовательно, использованные наночастицы, не влияя на изученные показатели у интактных животных, способствовали снижению эндотоксикоза у животных с опухолевым ростом.
8 животных с полной регрессией ЛСП после введения наночастиц железа были оставлены на выживание и выявление возможности рецидивирования и выведены из эксперимента через 3,5 месяцев после перевивки опухоли. У них наблюдалась нормализация большинства исследованных биохимических параметров. Анализ показателей эндогенной интоксикации показал, что в данной группе животных (т.е. по прошествии 2,5 месяцев после завершения эксперимента в основной группе) имеет место статистически значимое увеличение содержания общей и эффективной концентрации альбумина соответственно на 29,1 и 28,0 % относительно группы крыс с регрессией ЛСП, выведенных из опыта через 5–7 дней после завершения введения наночастиц железа. При этом ОКА была ниже на 19,4 %, чем у интактных животных, а ЭКА – на их уровне. Связывающая способность альбумина, индекс токсичности (ИТ) и содержанием обоих пулов МСМ не отличались от значений у животных сразу после достижения полной регрессии ЛСП. При этом коэффициент интоксикации (КИ) был статистически значимо ниже – на 22,9 %, т.е. за счет полной нормализации эффективной концентрации альбумина наблюдалось существенное снижение этого интегрального показателя интоксикации, отражающего баланс между накоплением и связыванием токсических лигандов.
Заключение
Полученные результаты свидетельствуют о том, что применение наночастиц железа в использованных нами дозах способствует снижению уровня эндогенной интоксикации, сопровождающей развитие злокачественного процесса. При этом наиболее выраженная нормализация большинства изученных показателей наблюдалась у животных спустя несколько месяцев после регрессии ЛСП под влиянием наночастиц железа. Это позволяет прийти к двум важным выводам о том что, во-первых, введение наночастиц железа (как внутриопухолевое, так и системное – внутрибрюшинное) в использованной нами дозировке, обладая выраженным противоопухолевым эффектом, не оказывает побочного токсического действия на организм и, во-вторых, в ближайшем периоде у животных с противоопухолевым эффектом не происходит возникновения рецидивов злокачественного процесса и наблюдается их 100 % выживаемость на протяжения длительного периода наблюдения. Таким образом, выявлено принципиальное различие в действии наночастиц железа при их внутриопухолевом и внутрибрюшинном введении животным-опухоленосителям и влиянии тех же наночастиц на состояние печени и ряда других органов при их введении здоровым животным per os. Полученные экспериментальные данные свидетельствуют о перспективности использования металлического железа в наноразмерной форме при разработке новых противоопухолевых препаратов.
Исследование частичной выполнено при финансовой поддержке РФФИ в рамках научного проекта № 14-04-32046 мол_а.