Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

GOLD AND NONFERROUS METALS LEACHING BY NOT CYANIC SOLVENTS

Mikhaylov A.G. 1 Kharitonova M.Yu. 1 Vashlaev I.I. 1 Sviridova M.L. 1
1 Institute of Chemistry and Chemical Technology SB RAS
The purpose of this research is to determine the possibilities of leaching of nonferrous metals by various solvents. Comparative experiments for various materials are made. The method of agitation leaching was used. Objects of researches are the old tails of copper-nickel ores in Norilsk Industrial District and gold ores of the deposit of Samson. The useful components was leached by solutions of thiourea, humate, iodide ammonium, iodine and lignin. The researches on agitation leaching of non-ferrous metals from ores are presented in the article. Possibility of leaching of gold by thiourea from tails of Norilsk factory is established. Possibility of leaching of platinum, nickel, palladium and copper by a lignin solution from tails of Norilsk factory is established. Possibility of leaching of gold by iodine and humate from ore and a concentrate of the deposit of Samson is established. Possibility of leaching of gold by iodine and lignin from tails of a deposit of Samson iodine is established.
agitation leaching
non-ferrous metals
ore
concentrate
old tails
not cyanic solvents

Выщелачивание представляет собой метод, позволяющий вовлекать в переработку минеральное сырье низкого качества и эффективно осваивать месторождения с малыми запасами, экономически невыгодными для переработки другими методами [7]. В мировой практике для выщелачивания золота из золотосодержащих руд широко применяется цианирование. Несмотря на преимущества перед другими растворителями, высокая токсичность цианидов вынуждает искать альтернативные растворители золота, удовлетворяющие ужесточенным экологическим требованиям. Большая группа нецианистых растворителей – тиокарбамид (тиомочевина), хлор, бром, тиосульфаты натрия и аммония, гидросульфиды, соли гуминовых кислот и др. изучена Иргиредметом. Результаты обобщены в работах [2, 5]. Работы по изучению растворения цветных металлов нецианистыми растворителями из руд и отходов обогащения проводились в ИХХТ СО РАН. Установлено, что при выветривании хвостов обогащения образуются растворимые формы цветных и благородных металлов [4]. Возможность сульфитного щелока переводить в растворимую форму цветные и благородные металлы показана в [3]. Полученные результаты легли в основу технологии восходящего капиллярного выщелачивания [6].

Цель исследования – определить оптимальный растворитель для извлечения металлов из золотосодержащих руд и отходов обогащения. Использовался метод агитационного выщелачивания. Данное исследование является предварительным этапом технологических исследований, позволяет на небольшом объеме материала выбрать оптимальный выщелачивающий реагент и установить максимально возможную степень извлечения металла из конкретной руды.

Материалы и методы исследования

Выщелачивание проводилось растворами тиомочевины, гуматов, йодистого аммония, йода и лигнина. Расход реагентов составил: тиомочевины 30 г/л, 10 г/л, гуматов – 100 г/л, йодистого аммония – 5 г/л, йода – 25 мл/л, сульфитный щелок (лигнин) 200 мл.

В качестве сульфитного щелока использованы отходы бисульфитной варки целлюлозы Енисейского ЦБК (г. Красноярск) с содержанием сухих веществ 8,7 мас. % без дополнительной обработки или концентрирования. Состав органических веществ щелока – лигносульфонаты – 65–66 %, углеводы – 16–17 %, органические кислоты 16–18 %.

Объектами для проведения исследований были первичные руды месторождения Самсон Нижнего Приангарья и отходы обогащения полиметаллических руд Норильского промузла, складированные в долине р. Щучья. Общий анализ горно-геологических условий, природных и технологических факторов показал возможность применения на этих объектах технологии восходящего капиллярного выщелачивания.

Исследования проводились для четырех проб, содержание в которых полезных компонентов приведено в табл. 1.

Таблица 1

Содержание полезных компонентов в исходных продуктах

 

Cu, %

Ni, %

Co, %

Fe, %

Mg, %

Pt, г/т

Pd, г/т

Au, г/т

Проба № 1

0,59

0,63

0,02

9,38

2,69

0,7

2,3

0,15

Проба № 2

2,8

Проба № 3

18

Проба № 4

1,86

Проба № 1 отобрана из технологической пробы лежалых отвальных хвостов Норильской обогатительной фабрики, складированных в долине р. Щучья. Внешне материал представляет собой серый песок средней крупности 2,0 мм. Из рудных минералов присутствуют пирротин, хромит; в подчиненном количестве халькопирит; изредка брусит, пентландит. По истечении нескольких десятилетий хранения содержание сульфидных минералов не превышает 10 %. В пробе, помимо золота, содержатся Ni, Cu, Co, металлы группы платины. Минералогический анализ показал, что доля свободного золота составляет 10–15 % от общего его содержания и находится в сростках с сульфидами. Минералогический анализ исходного материала показал, что сульфиды цветных металлов составляют 60–70 %, а в оксидных фазах – до 15–20 %. Золото (~87 %) и платина (~19 %) представлены органическими формами, основная часть платины (45 %) связана с оксидами железа и марганца, палладий – на 61 % связан с сульфидными минералами.

Проба № 2 отобрана из технологической пробы коры выветривания участка Верхнеталовский месторождения Самсон. Преобладающее срастание золота – с оксидами железа, в меньшей степени – с кварцем. Золото относительно равномерно распределено по всем классам крупности. Свободное золото присутствует в основном в крупности менее 0,044 мм. В результате гравитационных испытаний в шлих извлеклось 40 % золота. В настоящее время отработка месторождения ведется по гравитационной технологии. Содержание золота в хвостах гравитационного обогащения составляет 0,74 г/т, что требует дальнейшей переработки выщелачиванием [1]. Золото распределено по классам крупности относительно равномерно, обедненные до отвального содержания классы в руде не представлены. Содержание золота в руде, определенное пробирным анализом, – 2,8 г/т. Форма золотин сложная, присутствует губчатое и пористое золото. Раскрытие золота происходит в крупности менее 0,16 мм.

Проба № 3 представляет собой флотоконцентрат, полученный из руды Верхнеталовского участка месторождения Самсон в лабораторных условиях на флотомашине механического типа. Реагентный режим: ксантогенат 150 г/т, ИМ50 – 50 г/т и сосновое масло 160 г/т. Масса навески 300 г. Объем камеры 3 литра. Отношение Т:Ж = 1:3. Время флотации 10 минут. После флотации пульпа промывалась от реагентов. Далее концентрат высушивался.

Проба № 4 отобрана из технологической пробы отходов гравитационной переработки месторождения Самсон.

Пробы руды измельчали до 2 мм, крупность флотоконцентрата 0,44 мм. Масса навески в каждом опыте составляла 100 г, объем раствора – 200 мл. Измельченная проба с выщелачивающим раствором при соотношении жидкой фазы к твердой Ж:Т = 2:1 взаимодействовала в течение 24 часов при комнатной температуре при периодическом перемешивании. Для контроля процесса через 1, 2, 4, 24 часа отфильтровывали пробы раствора на анализ на содержание полезных компонентов. По окончанию эксперимента (24 часа) проба также анализировалась. Извлечение металлов рассчитывалось по содержанию в фильтрационных растворах. В табл. 2 приведены максимальные значения извлечений, полученные в результате проведения опытов.

Результаты исследования и их обсуждение

Проба № 1. При использовании в качестве выщелачивающего раствора тиомочевины 3 % за 24 часа эксперимента получено наибольшее извлечение золота (53,03 %). Есть смысл увеличить время агитации при использовании тиомочевины и йодистого аммония. При использовании гуматов, лигнина и йода максимум извлечений достигается за 1–4 ч активации.

Для выщелачивания платины, палладия, меди и никеля наилучший результат показал раствор сульфитного щелока (рис. 1).

Проба № 2. Максимальное извлечение наблюдалось в опытах при продолжительности выщелачивания 2 часа гуматом (43,18 %), 4 часа йодом (33,25 %), 1 час лигнином (22,14 %). Дальнейшее увеличение продолжительности до 24 ч приводит к снижению перехода металла в раствор (рис. 2).

Таблица 2

Результаты агитационного выщелачивания

 

Тиомочевина, 3 %

Тиомочевина, 1 %

Гуматы

Аммоний йодистый

Йод

Сульфатный щелок

время, ч

извлечение, %

время, ч

извлечение, %

время, ч

извлечение, %

время, ч

извлечение, %

время, ч

извлечение, %

время, ч

извлечение, %

Проба № 1: Au

24

53,03

24

5,47

4

17,26

24

6,04

2

15,6

2

31,66

Pd

24

12,06

24

1,65

24

2,65

24

71,59

Pt

24

4,23

24

0,6

4

26,6

24

87,21

Cu

24

28,53

24

1,39

1

0,64

4

3,54

4

30,92

24

30,10

Ni

4

69,37

24

31,75

1

4,76

4

87,46

24

28,78

4

84,4

Проба № 2

 

2

43,18

4

33,25

1

22,14

Проба № 3

 

4

26,39

24

42,13

Проба № 4

24

2,88

24

1,29

24

17,90

24

34,81

24

63,66

1

39,78

pic_42.wmf

Рис. 1. Кинетика извлечения металлов в раствор при использовании лигнина (проба № 1)

Проба № 3. Лучшее извлечение (42,13 %) получено при обработке йодом за 24 часа. При обработке гуматами в течение 4 часов извлечение достигается 26,39 %. Остальные растворители в опытах с данной пробой не работают (рис. 3).

Проба № 4. На рис. 4 представлена кинетика извлечения золота отвальных хвостов месторождения Самсон в раствор при использовании различных растворителей. Как видно, максимальное извлечение золота в раствор наблюдается при использовании йода (63,66 %) за 24 часа выщелачивания. При применении йодистого аммония и йода можно предположить дальнейшее нарастание извлечения золота в раствор при продолжении опыта более 24 часов. (рис. 4). Поэтому для того, чтобы проследить дальнейшее направление процесса, необходимо увеличить время агитации для этих растворов.

pic_43.wmf

Рис. 2. Кинетика извлечения золота в раствор для различных растворителей (проба № 2): 1 – гуматы; 2 – йод; 3 – лигнин

pic_44.wmf

Рис. 3. Кинетика извлечения золота в раствор при различных растворителях (проба № 3): 1 – йод; 2 – гуматы

Заключение

Опыты показали, что для выщелачивания золота из исследуемых материалов наиболее эффективны растворы: для лежалых отвальных хвостов Норильской обогатительной фабрики, складированных в долине р. Щучья – раствор тиомочевины 3 %; для руды месторождения Самсон (в порядке убывания) – гуматы – йод – сульфитный щелок; для концентрата месторождения Самсон – йод – гуматы; для хвостов гравитационного обогащения месторождения Самсон – йод – сульфатный щелок – йодистый аммоний – гуматы. Для извлечения платины, никеля, палладия и меди из отвальных хвостов Норильской фабрики наибольшие извлечения дает раствор сульфитного щелока.

pic_45.wmf

Рис. 4. Кинетика извлечения золота в раствор для различных растворителей (проба № 4): 1 – йод; 2 – йодистый аммоний; 3 – гуматы; 4 – лигнин; 5 – тиомочевина

Полученные результаты являются ориентиром для выбора растворителей и их концентраций, с которыми дальше будут проведены укрупненные лабораторные испытания при фильтрационном режиме выщелачивания.

Основные выводы

1. Показана принципиальная возможность перевода в раствор цветных металлов при выщелачивании хвостов Норильской обогатительной фабрики сульфитным щелоком. Извлечение составляет 30–84 %. Для извлечения золота возможно использование тиомочевины 3 %, извлечение выше, чем другими исследованными растворителями.

2. Показана принципиальная возможность перевода в раствор золота при выщелачивании руды и флотоконцентрата месторождения Самсон йодом и гуматами. Извлечение 26–43 %.

3. Показана принципиальная возможность перевода в раствор золота при выщелачивании лежалых хвостов гравитационного обогащения месторождения Самсон йодом и сульфитным щелоком. Извлечение 64–40 %.

4. Представляется целесообразным дальнейшее проведение исследований по выщелачиванию исследуемых материалов.