Научный интерес к проблемам управления физико-химическими свойствами материалов посредством обработки различными физическими полями, оказывающими действие на их дефектную структуру, не теряет актуальность и практическую значимость.
Так, например, в энергетических материалах это связано с возможностью интенсификации физико-химических процессов, которые изменяют их реакционную способность и стабильность [1–5].
В данной работе представлены результаты исследования совместного действия внешнего механического напряжения и магнитного поля на процессы, связанные с изменением дефектной структуры энергетических материалов.
В качестве объекта исследования выбран типичный представитель энергетических материалов – азид серебра, который также является модельным объектом в химии твердого тела.
Азид серебра дефектен по Френкелю с преимущественно подвижными междоузельными катионами серебра (Ag+). Поверхность кристаллов азида серебра заряжена положительно, а приповерхностная область обогащена отрицательно заряженными катионными вакансиями (Vk-). Также известен качественный и количественный состав примесей: Fe3+, Al3+, Bi3+, Pb2+, Si4+, Ti2+ с концентрацией 3•10-5×10-4 мольных процентов [1].
При механическом воздействии, а для нитевидных кристаллов – это микроиндентирование, увеличивается плотность краевых дислокаций. Учитывая, что линии краевых дислокаций в кристаллах азида серебра частично заряжены (10-16 Кл) и имеют магнитный момент (5×10-21 А·м2), а также отвечают за пластичность, то можно ожидать эффективное действие магнитного поля на процессы, инициированные механическим воздействием [6]. Также установлено, что краевые дислокации являются еще и центрами инициирования реакции разложения. Тогда воздействие магнитным полем может эффективно изменять не только характер пластического течения кристаллов, но и их реакционную способность.
Целью работы является исследование влияния магнитного поля (0,1–0,6 Тл) на процессы деформации и разложения нитевидных кристаллов азида серебра при механическом воздействии.
Кроме того, проведены исследования и выявлены закономерности влияния температуры хранения образцов (от –20 °С до 30 °С) на деформацию за пределами упругости.
Материалы и методы исследования
Объектами исследования являются нитевидные кристаллы азида серебра (AgN3), выращенные по методике Ф.И. Иванова и имеющие средние размеры 10×0,1×0,03 мм3 [1].
Обычно это оптически прозрачные кристаллы, имеющие совершенную огранку, как показано на рис. 1.
Для проведения экспериментов готовили образцы в планарном варианте геометрии, которая позволяет наблюдать за поверхностью кристалла и фиксировать выделяющийся при разложении газообразный продукт, а также проводить наблюдения за топографией его распределения: на предварительно обезжиренную этиловым спиртом слюдяную подложку кристаллы наклеивали за оба конца клеем БФ–6, являющимся химически инертным по отношению к азиду серебра.
Для нитевидных кристаллов в качестве механического воздействия использовали микроиндентирование (индентор из вольфрама, создающий локальное давление в пределах 5×105 Н/м2 – 5×107 Н/м2). Также для обеспечения изгибного деформирования образца, находящегося между полюсами электромагнита, выставляли стержень с конусной заточкой основания, выполненный из диэлектрического материала. Локальное давление в этом случае изменяли в диапазоне от 5×105 Н/м2 до 5×107 Н/м2.
Рис. 1. Кристаллографические индексы граней и направлений кристалла азида серебра
Магнитное поле создавали с помощью электромагнита (ЭМ-1) с регулируемой напряженностью до 1 Тл. Магнитная индукция измерялась с помощью простейшего магнитометра (чувствительность 10-5 Тл).
Разложение в анионной подрешетке исследовали методом внешнего газовыделения (во время действия магнитного поля фиксировали пузырьки газообразного продукта (азота)); измеряли по шкале микрометра радиус и находили объем каждого пузырька, затем суммировали и определяли общий объем газа при соответствующих условиях эксперимента.
Дислокационная структура исследовалась методом ямок травления. Контрастные ямки травления получались при травлении кристаллов азида серебра в 10 %-ном водном растворе тиосульфата натрия. Плотность дислокаций определяли как отношение количества ямок травления к площади поверхности кристалла.
Для отбора и измерения размеров образцов вдоль кристаллографического направления 100 использовали микроскоп типа «Биолам» с увеличением на 120.
На каждую точку экспериментальных кривых брали не менее 10 образцов. Обработка экспериментальных результатов проводилась на ПК по программе Microsoft Excel.
Результаты исследования и их обсуждение
Ранее были проведены исследования влияния механического напряжения (микроиндентирования) на плотность дислокаций в кристаллах азида серебра. Получены кинетические зависимости накопления дислокаций при механическом воздействии (5×105 – 5×107 Н/м2), из которых следует, что уже за 7–9 секунд непрерывного воздействия образец теряет механическую прочность и подвергается хрупкому разрушению без взрыва.
При микроиндентировании обнаружено выделение газообразного продукта с внешней поверхности нитевидных кристаллов азида серебра (в этом случае образец находится под слоем вазелинового масла) либо фиксируют выделение пузырьков газа при растворении кристалла в тиосульфате натрия после снятия воздействия; в обоих случаях определяют объем газообразного продукта и делят на площадь грани, с которой наблюдают газовыделение [6].
а) б)
Рис. 2. Схема проведения индентирования нитевидных кристаллов азида серебра в магнитном поле: a – образец между полюсами магнита; б – индентирование образца: 1 – кристалл, 2 – подложка, 3 – окуляр микроскопа, 4 – полюса магнита, 5 – индентор, 6 – пружина заданной жесткости
Рис. 3. Изменение плотности дислокаций в нитевидных кристаллах азида серебра от времени воздействия механического напряжения (5×105 Н/м2) и магнитного поля (0,3 Тл)
Отмечена взаимосвязь плотности дислокаций и интенсивности газовыделения, а именно: количество ямок травления совпадает с количеством центров газовыделения, которые работают не обязательно синхронно.
Теоретически и экспериментально определено механическое напряжение, при достижении которого происходит хрупкое разрушение нитевидных кристаллов азида серебра, что составляет примерно 3×107 Н/м2.
При совместном действии механической нагрузки и магнитного поля кинетика накопления дислокаций от времени воздействия усложняется (рис. 3). В этих экспериментах были использованы образцы с начальной плотностью краевых дислокаций ~ 4× 103 см-2.
Как следует из полученных результатов, постоянное магнитное поле стимулирует перемещение краевых дислокаций в кристаллах азида серебра при микроиндентировании.
Рассмотрим процессы, протекающие в кристаллах азида серебра при индентировании в магнитном поле.
Во-первых, это движение не закрепленных дислокаций, введенных индентором (рис. 3, участок 1 на кривой), ямки травления в этом случае не фиксируются. Затем наблюдается накопление дислокаций («лес» дислокаций), происходящее за счет торможения атмосферой Коттрелла, состоящей из примесных атомов (это участок 2 на рис. 3). В этом случае скорость движения дислокаций лимитируется скоростью миграции атомов атмосферы. Дислокации стопорятся с образованием центров, в которых запускается реакция разложения и наблюдается газовыделение. Такие дислокации не перемещаются по кристаллу.
Дальнейшее воздействие приводит к срыву дислокаций и, соответственно, к уменьшению плотности дислокаций (участок 3 на рис. 3).
Длительное механическое воздействие (более 30 минут) сопровождается максимальным увеличением плотности дислокаций (более 5,5×103 см-2) и максимальным изменением линейных размеров образца Δℓ⁄ℓ = (2,5 ± 0,5)·10-2, а заканчивается появлением микротрещины в месте установления индентора, ее разрастанием и растрескиванием образца на две части; либо при выборе максимального механического напряжения происходит хрупкое разрушение всего образца.
В условиях наложения магнитного поля дислокации, вводимые индентором, почти постоянно находятся в движении (это доказано наличием ямок травления только при достижении максимальной плотности дислокаций).
Можно предположить, что магнитное поле способствует откреплению дислокаций от парамагнитной примеси (например, Fe3+), после чего они совершают направленное движение, причиной которого может быть наличие магнитоэлектрического эффекта [2].
При микроиндентировании в магнитном поле в кристаллах азида серебра накопление краевых дислокаций приводит сначала к изменению линейных размеров, затем к выделению газообразных продуктов разложения, затем к появлению углубления в месте внедрения индентора, которое через определенное время приводит к разлому образца (рис. 4, кривая 2).
В магнитном поле без механического воздействия разрушения образцов при указанных временах воздействия не наблюдается (рис. 4, кривая 1) [2, 6].
Рис. 4. Зависимость количества выделившегося газа в кристаллах азида серебра от времени воздействия: 1 – магнитного поля (0,3 Тл); 2 – микроиндентирования и магнитного поля
Экспериментально показано, что предварительно подвергнутые механическому воздействию кристаллы азида серебра, находящиеся длительное время (не менее 30 суток) при температуре выше 30 °С, интенсивно чернеют, т.е. их поверхность покрывается коллоидным серебром, и при растворении без какого-либо дополнительного воздействия разлагаются с образованием газообразных продуктов. При хранении таких кристаллов в слабом магнитном поле (≈0,01 Тл) процесс старения ускоряется.
В данном случае незначительное увеличение температуры хранения, по сравнению с комнатной, ускоряет процесс старения образцов, что приведет к потере полезных свойств и рабочих характеристик энергетических материалов.
Следует отметить особенность воздействия отрицательных температур (0 – 20 °С): образцы после этого становятся хрупкими и проводить дальнейшие исследования на них весьма затруднительно. То есть действие отрицательных температур на нитевидные кристаллы аналогично действию механического воздействия, что приводит к понижению их предела прочности. Если создать реальные условия хранения данных материалов, а именно, многократно и кратковременно помещать кристалл в область отрицательных температур, то четкой границы перехода от усталостного состояния к хрупкому разрушению не наблюдается при возникновении первых микротрещин. Что касается хрупкой прочности, которая обычно оценивается способностью образцов противостоять быстрому ударному нагружению, то нитевидные кристаллы, подвергнутые термической обработке в области отрицательных температур, рассыпаются при уже при соприкосновении с индентором.
Заключение
По результатам работы можно сделать следующие выводы.
1. Экспериментально установлено, что при микроиндентировании в магнитном поле в кристаллах азида серебра накопление краевых дислокаций приводит сначала к изменению линейных размеров, затем к выделению газообразных продуктов разложения, затем к появлению углубления в месте внедрения индентора, которое через определенное время приводит к разлому образца (без взрыва).
2. Установлено, что незначительное увеличение температуры хранения, по сравнению с комнатной, ускоряет процесс старения кристаллов азида серебра, что приводит к потере прочности и стабильности энергетических материалов, в то время как термическая обработка в области отрицательных температур приводит к возникновению микротрещин и хрупкому разрушению образцов.
3. На основании полученных результатов может быть предложен способ управления стабильностью нитевидных кристаллов азида серебра с помощью локального индентирования в магнитном поле.