Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

PRODUCTION OF SOLUBLE MODIFICATION OF KERATIN FROM PROTEIN-CONTAINING ANIMAL WASTES

Bortnikov S.V. 1 Gorenkova G.A. 1
1 Khakass State University named after N.F. Katanov
At the various stages of processing livestock animal wastes products about half of the feedstock is converted to waste. This applies, in particular, to protein-containing animal wastes (feathers, wool), the basis of which is unique in its composition, structure and properties the fibrillar protein keratin. The problem of transferring keratin to a water-soluble state limits the use of these wastes as secondary raw materials in various branches of the economy in order to obtain a number of valuable products and materials. Known methods for processing keratin-containing raw materials are based on the breakdown of the bonds, forming the protein structure, under acidic, alkaline or enzymatic hydrolysis with a large number of competing reactions and the formation of a mixture of products of partial and complete destruction of the polypeptide. The strongest bond, forming the tertiary structure of keratin (disulphide), can also be broken during the oxidation-reduction process under relatively mild conditions. The proposed method of obtaining a soluble keratin modification is based on the interaction of protein-containing materials (feather, wool) with agents, having redox properties: sodium sulfide, sodium sulfite and hydrogen peroxide. The transition of keratin to a solution occurs to a varying degree in all model systems, while the protein concentration in the solution increases more rapidly with the use of sodium sulfide and reaches a higher value than in the case of sodium sulfite and hydrogen peroxide. It can be assumed that in the case of a sulfide, the process is limited to a reduction reaction to form thiol derivatives, and in the case of a sulfite and hydrogen peroxide the process is complicated by a competing oxidation reaction to form final products of a more complex composition. The proposed technology allows in mild conditions, without protein degradation and side processes to obtain its water-soluble form.
keratin
protein-containing animal wastes
feather
wool
native protein structure
disulfide bonds
redox reagents
modification
1. Larionov M.V., Larionov N.V. Biogeotsenoticheskii uroven ekotoksikologicheskikh effektov v soobshchestvakh zhivykh organizmov Saratovskoi oblasti [Biogeocenotic level of ecotoxicological effects in communities of living organisms in the Saratov region]. Vestnik VolGU. Seriia 3: Ekonomika. Ekologiia – Bulletin of Volgograd State University. Series 3: The Economy. Ecology, 2009, no. 1, pp. 238–243.
2. Larionov M.V., Larionov N.V. Obshchaia ekologiia: praktikum [General ecology: workshop]. Saratov, Saratovskii istochnik, 2014. 164 р.
3. Larionov M.V., Domashenko Iu.E., Kulik M.I., Mazina S.E., Sukisian A.R. Aktualnye zadachi biologii i ekologii v regionalnom kontekste: monografiia [Actual problems of biology and ecology in the regional context: monograph]. Novosibirsk, ANS SibAK, 2016. 124 р.
4. Volik V.G, Ismailova D.Iu., Erokhina O.N., Zinovev S.V., Kozak S.S., Mukhin Iu.E., Koroleva O.V. Effektivnoe ispolzovanie vtorichnogo syria, poluchaemogo pri pererabotke ptitsy [Effective use of secondary raw materials obtained from poultry processing]. Ptitsa i ptitseprodukty – Poultry and poultry products, 2011, no. 3, pp. 16–19.
5. Sapozhnikova A.I. Razrabotka i otsenka kachestva produktsii na osnove fibrilliarnykh belkov iz otkhodov syria zhivotnogo proiskhozhdeniia: dis…. dokt. tekhn. nauk [Development and evaluation of product quality on the basis of fibrillary proteins from waste materials of animal origin]. Moscow, Moskovskaia gosudarstvennaia akademiia veterinarnoi meditsiny i biotekhnologii im. K.I. Skriabina, 1999. 312 р.
6. Babich O.O., Razumnikova I.S., Poletaev A.Iu., Morozova A.I. Pererabotka vtorichnogo keratinsoderzhashchego syria i poluchenie belkovykh gidrolizatov na pishchevye i kormovye tseli [Processing of secondary keratin-containing raw materials and production of protein hydrolysates for food and feed purposes]. Tekhnika i tekhnologiia pishchevykh proizvodstv – Technique and technology of food production, 2011, no. 2, pp. 7–11.
7. Poletaev A.Iu., Kurbanova M.G. Osobennosti pererabotki belkovogo syria v polnotsennye korma dlia selskokhoziaistvennykh zhivotnykh [Features of processing of protein raw materials in high-grade fodder for farm animals]. Tekhnika i tekhnologiia pishchevykh proizvodstv – Tekhnika i tekhnologiia pishchevykh proizvodstv, 2010, no. 3, pp. 29–34.
8. Belova A.V. Razrabotka tekhnologii dvukhstadiinogo gidroliza otkhodov ptitsepererabatyvaiushchikh proizvodstv: dis…. kand. tekhn. nauk [Development of technology for twostage hydrolysis of poultry processing waste]. St. Petersburg, Sankt-Peterburgskii gosudarstvennyi universitet nizkotemperaturnykh i pishchevykh tekhnologii, 2004. 160 р.
9. Bortnikov S.V., Gorenkova G.A., Komarova O.V. Poluchenie keratinsoderzhashchikh belkovykh dispersii iz peropukhovykh otkhodov [Keratin Protein Dispersion Obtaining from Waste Feather and Down]. Vestnik Khakasskogo gosudarstvennogo universiteta im. N.F. Katanova – Herald of Katanov Khakass State University, 2015, no. 14, pp. 11–14.

Специфика переработки продуктов животноводства заключается в том, что в процессе получения основной товарной продукции до половины исходного сырья на различных стадиях технологического процесса превращается в отходы. Это касается, в частности, белоксодержащих отходов птицеводства и шерстеперерабатывающих производств.

В крупных животноводческих хозяйствах белоксодержащие отходы могут, в определенной степени, представлять угрозу экологическому состоянию – медленно разлагаясь и выделяя загрязняющие, в том числе токсичные вещества в окружающую среду [1]. Так, накапливающиеся в анаэробных условиях в почве продукты разложения белков (диамины) проявляют ярко выраженные фитотоксичные свойства и нередко способствуют угнетению роста растений [2, 3].

Кератин, являясь животным белком, состоит из α-аминокислот, из которых порядка 30 % относятся к группе незаменимых для животного организма. Природные кератины очень богаты кислыми и основными аминокислотами. Эти белки отличаются также необычно высоким содержанием остатков цистеина – аминокислоты, содержащей тиольную группу (SH). Во многом по этой причине кератин характеризуется особыми физико-химическими свойствами. В частности, кератин отличается высокой устойчивостью к воздействию различных реагентов: в воде, растворах нейтральных солей и в разбавленных растворах кислот и щелочей кератин нерастворим. Он не подвергается гидролизу под действием ферментов, кроме фермента кератиназы. Наличие в составе этого белка большого числа тиольных групп обуславливает значительную роль дисульфидных ковалентных связей, формирующих и поддерживающих нативную структуру полипептида.

Устойчивость кератина к химическим реагентам, внешним воздействиям, ферментам пищеварительных соков животных обусловлена главным образом именно наличием в структуре его дисульфидной (цистиновой) связи. По этой причине большинство животных организмов усваивать этот белок в нативном состоянии не может [4].

Очевидно, чтобы перевести кератин в усваиваемое (водорастворимое) состояние, необходимо разрушить третичную структуру белка.

Процесс денатурации способствует разворачиванию укладки цепей полипептида. В ходе этого процесса утрачиваются свойства, характерные для нативного кератина. При денатурации становятся доступны функциональные группы, ранее находящиеся в положении скрытых в нативном состоянии молекул. Следовательно, для того, чтобы получить водорастворимый кератин, следует оказывать воздействия, вызывающие процесс денатурации. Это может быть изменение суммарного заряда полипептида за счет варьирования рН и частичный разрыв ковалентных дисульфидных связей. В результате изменения рН молекула белка кератина как полиамфолит меняет свою структуру и свойства, увеличивается способность к гидратации, набуханию и растворению в воде. Разрушение дисульфидных связей, формирующих третичную структуру белка, приводит к её нарушению, что выражается в разрыхлении структуры пера, снижению его прочности, что облегчает проникновение молекул воды внутрь структуры и сопровождается его более эффективным набуханием.

Одной из главных характеристик химической активности тиолов и их производных (сульфидов) является их способность к окислительно-восстановительным превращениям. Так, при действии на дисульфиды восстановителей (сульфидов, бисульфитов, гидросульфитов и др.) дисульфидные связи разрываются с последующим присоединением по месту освободившихся валентностей различных групп в зависимости от применяемого реагента. В биохимических реакциях роль восстанавливающего реагента играет фермент кератиназа, наличие которого дает возможность некоторым организмам усваивать кератин (Tineola bisselliella). При окислении тиолы превращаются в сульфоновые кислоты, образующие в щелочной среде соответствующие соли, тем самым нейтрализуя конечный раствор.

В литературных источниках описаны различные методы получения гидролизатов из кератинсодержащего сырья: гидротермический, щелочной, кислотный, ферментативный [5]. Известные методы по переработке кератинсодержащего сырья основаны на разрыве связей, образующих четвертичную, третичную, вторичную и первичную структуры. В последнем случае деструкция кератина идет до свободных аминокислот. Как показывает анализ доступной научно-технической информации, в основном используют комбинацию физических и химических воздействий на кератинсодержащее сырьё для извлечения белка. Чтобы получить растворимый белок из нерастворимого полипептида, необходимо подобрать условия и реагенты, которые позволили бы разрушить четвертичную, третичную, вторичную структуры. В числе факторов, которые изменяют четвертичную структуру перьевого кератина, – изменение рН, повышение температуры, действие детергентов и т.д. К разрушению третичной и вторичной структуры без разрыва пептидных связей (денатурации) могут привести: нагревание растворов белка выше 60 °С, изменение рН (<3–4 или >10), ультразвук, органические растворители, соли тяжелых металлов, детергенты и т.д. И как результат – изменяются кристаллическая структура, растворимость и др. [5, 6].

При гидролизе в качестве реагентов используют 0,25–10 % растворы гидроксида натрия, 13 % раствор гидроксида калия или 25 % раствор аммиака, растворы минеральных и органических кислот. Гидролиз, как правило, осуществляют при нагревании до 95 °С в течение длительного времени (до 5 и более часов) [7].

Основными недостатками гидролиза при высоких температурах являются значительная деструкция как самого белка, так и отдельных аминокислот, входящих в его состав. Длительность процесса и жесткие условия приводят к разрушению аминокислот и их частичной рацемизации [7].

Так, некоторые авторы [8] указывают, что при использовании жестких температурных режимов сильно возрастает потеря серосодержащих аминокислот (цистеина).

Материалы и методы исследования

Щелочной гидролиз. 10 г пера промывали тёплым мыльным раствором, несколько раз ополаскивали дистиллированой водой, помещали в колбу и добавляли 100 мл 10 % раствора NaOH. Отбирали пробы через 24, 48, 72, 144, 168 часов. Определяли концентрацию белка.

Гидролиз в присутствии восстановителя. 10 г пера промывали тёплым мыльным раствором, несколько раз ополаскивали дистиллированной водой, помещали в колбу и добавляли 200 мл 0,1 н раствора NaOH, и 200 мл 10 % раствора Н2О2, Na2S, Na2SO3. Отбирали пробы через 24, 48, 72, 144, 168 часов. Определяли концентрацию белка.

Количественную оценку содержания белка проводили фотоколориметрическим методом по биуретовой реакции.

Результаты исследования и их обсуждение

Моделирование процесса гидролиза пера птицы, основанное на литературных аналогиях, заключающееся в длительном кипячении исходного сырья в растворах щёлочи и кислоты, обнаружило полное растворение пера и глубокую деструкцию кератина. По истечении 5 часов кипячения нерастворимой фракции в системе не осталось. В случае обработки кислотой наблюдалось также и значительное обугливание органического вещества.

Тонкослойная хроматография с нингидрином показала наличие серосодержащих аминокислот (цистеина и метионина) в гидролизатах исследуемых образцов. Это подтверждает, что при использованном методе обработки пухо-перового сырья происходит разрушение не только третичной и вторичной, но также и первичной структуры белка с образованием олигопептидов с низкой молекулярной массой и свободных аминокислот.

Во избежание указанных негативных процессов в системе нами осуществлен щелочной гидролиз в мягких условиях, когда перо выдерживалось в 10 % растворе NaOH при комнатной температуре. Эксперимент показал, что в течение суток произошло полное растворение пера.

Таким образом, при действии щелочи в мягких условиях кератин также переходит в раствор за счет селективного гидролиза дисульфидных -S-S- связей в молекуле. Образующиеся продукты реакции (тиолы, сульфоновые кислоты), как правило, неустойчивы в щелочных растворах, и в них могут протекать дальнейшие изменения, осложняющие процесс и загрязняющие конечный целевой продукт.

Подобных нежелательных последствий при осуществлении процесса гидролиза можно попытаться избежать используя особенности химического поведения рассматриваемых веществ.

Предлагаемый в настоящей работе метод получения растворимой модификации кератина основан на взаимодействии кератина с агентами, обладающими окислительно-восстановительными свойствами: сульфидом натрия, сульфитом натрия и перекисью водорода. Эффективность метода оценивалась по содержанию белка в растворе.

Известно, что в случае реакции окисления дисульфидной связи перекисью водорода в присутствии муравьиной кислоты образуются сульфоновые кислоты (схема).

Дисульфидная связь при этом разрушается, белок переходит в водорастворимое состояние. При этом большая часть тиольных групп остатков цистеиновой кислоты в белке будет окислена, что означает фактическую потерю цистеина в конечном продукте.

В случае восстановления дисульфидной связи можно предположить образование тиолов, производной которых белковая аминокислота цистеин и является.

bortn2.wmf

Как показал эксперимент, предлагаемые методы оказались достаточно эффективными. Переход кератина в раствор в разной степени происходит во всех модельных системах. После 96-часовой экспозиции обработки пера наблюдалось полное его растворение, несмотря на значительно меньшую концентрацию (0,5 % раствор по сравнению с 10 % раствором в предыдущем опыте) щелочи в рабочем растворе. Можно предположить, что в этом случае растворение белка связано не с щелочным гидролизом, а с окислительно-восстановительным процессом преобразования дисульфидной связи. Полученная система представляла собой прозрачный практически бесцветный раствор. Следует отметить, что проведение реакции в жестких условиях (при температуре 80–90 °С) приводило к образованию сильно окрашенных растворов, что является следствием побочных деструктивных и окислительных реакций [9].

Концентрация белка во всех случаях возрастала на протяжении 48 часов. Затем наблюдалась определенная стабилизация системы. В течение 2–3 суток концентрация белка оставалась практически постоянной. После этого в эксперименте отмечалось резкое снижение содержания белка в растворе, что может быть связано с самопроизвольным разрушением белковой молекулы (рис. 1).

bortn1.wmf

bortn1R.tif

Рис. 1. Изменение концентрации белка в гидролизатах пера в модельных системах

Обращает на себя внимание, что концентрация белка в растворе при использовании сульфида натрия возрастает быстрее и достигает большего значения (до 57 г/л), чем в случае с сульфитом натрия и перекисью водорода. С химической точки зрения это выглядит вполне обоснованно, учитывая, что сульфид – типичный восстановитель в окислительно-восстановительных реакциях, а сульфит и перекись водорода – реагенты с двоякими свойствами (окислителя и восстановителя).

Можно предположить, что в случае с сульфидом процесс ограничивается реакцией восстановления с образованием производных тиолов, а в случае с сульфитом и перекисью водорода процесс осложняется конкурирующей реакцией окисления с образованием конечных продуктов более сложного состава.

Таким образом, проведенное исследование показывает, что для получения водорастворимой формы кератина из пера наиболее целесообразным является способ обработки кератинсодержащего сырья раствором, содержащим типичный восстановитель в щелочной среде.

Аналогичный результат был получен в случае эксперимента по переводу в растворимое состояние кератина шерсти. В опыте с раствором сульфида натрия в щелочной среде наблюдалось увеличение концентрации белка до 43 г/л в течение 48 часов (рис. 2).

bortn2R.tif

Рис. 2. Изменение концентрации белка в гидролизате шерсти в модельной системе NaOH (0,5 %) : Na2S (10 %)

Выводы

В присутствии в растворе химических реагентов с окислительно-восстановительными свойствами осуществлен процесс перехода кератина пера и шерсти в водорастворимое состояние. В результате такой обработки дисульфидные связи в молекуле белка разрываются с образованием продуктов окисления и восстановления серы, что влечет за собой изменение структуры белка и увеличение его растворимости. Наиболее эффективным вариантом в плане скорости процесса и выхода конечного продукта оказался способ воздействия раствором, содержащим типичный восстановитель (сульфид натрия) в щелочной среде.

Проведенные исследования показали, что получение растворимой модификации кератина из соответствующего белоксодержащего сырья (перо, шерсть) можно эффективно проводить в мягких условиях, не прибегая к высоким температурным режимам и агрессивным реагентам.

Данная технология позволяет в мягких условиях, без деструкции белка и побочных процессов получить его водорастворимую форму, которая может быть использована в различных отраслях практической деятельности. Кроме того, утилизация подобных отходов имеет большое экологическое значение, предотвращая попадание токсичных веществ в окружающую среду, и способствует переходу к высокопродуктивному и экологически чистому сельскому хозяйству.