В настоящее время в нашей стране, как и во всем мире, промышленность характеризуется высокими темпами индустриализации, что является причиной появления большого количества участков урбанизированной территории, нарушенной вследствие антропогенной деятельности. В связи с этим возникает проблема оценки степени нарушенности данной территории при составлении прогнозов возможности ее дальнейшего использования или восстановления. Поэтому организация и проведение инженерно-экологических изысканий является актуальной практической задачей на стадиях разработки предпроектной и проектной документации в соответствии с действующим экологическим законодательством [1; 2].
Одним из элементов инженерно-экологических изысканий является анализ почвогрунтов обследуемой территории. Это обусловлено необходимостью получения сведений о состоянии почвы и грунтов с целью определения пригодности территории для планируемых видов деятельности, так как почвогрунты являются важной составляющей окружающей среды, выполняя глобальные и биогеоценотические (экосистемные) функции [3].
По мнению большинства авторов, работы по проведению почвенно-грунтовых исследований должны отвечать следующим основным принципам: системности, объективности и достоверности полученных данных, научности, практической значимости [4; 5].
В соответствии с изложенными принципами комплекс работ по исследованию почвогрунтов должен включать: анализ запланированных проектной документацией решений для постановки целей и задач исследования; подбор методов исследования, обеспечивающих всестороннее изучение объекта и воспроизводимость результатов; оценку полученных результатов исследования; разработку практических рекомендаций для корректировки проектных решений [4; 6]. Следует отметить, что состав комплекса работ по проведению исследования почвогрунтов может меняться в зависимости от вида намечаемой деятельности, географического положения обследуемой территории, степени антропогенной нарушенности ландшафта и др. [4].
В настоящей работе мы попытаемся рассмотреть подходы к организации и проведению исследований, связанных с анализом почвогрунтов урбанизированной территории в рамках проведения инженерно-экологических изысканий.
Урбанизированная территория характеризуется высокой степенью техногенного изменения пространства, загрязнения химическими соединениями (солями тяжелых металлов, нефтепродуктами, бенз-а-пиреном), наличием патогенной микрофлоры, а иногда и содержанием радиоактивных изотопов. Все перечисленное предопределяет программу инженерно-экологических изысканий в целом и почвенно-грунтовых исследований в частности [4; 5].
По нашему мнению, в состав работ, связанных с анализом почвогрунтов урбанизированной территории, должны в обязательном порядке включаться: общая характеристика, полный микробиологический анализ, определение содержания нефтепродуктов, тяжелых металлов, бенз(а)пирена и радиологическое обследование (гамма-спектрометрия), так как данный комплекс исследований позволит наиболее объективно оценить степень нарушенности исследуемого объекта.
Целью настоящей работы являлось описание на конкретном примере принципов и методологии физико-химического, микробиологического и радиологического исследования почвогрунтов при проведении инженерно-экологических изысканий на урбанизированной территории.
Материалы и методы исследования
Исследования почвогрунтов проводились в рамках инженерно-экологических изысканий при обследовании участка в пределах г. Брянска Брянской области, с целью определения возможности его дальнейшей застройки.
Отбор проб почвогрунта производили в соответствии с требованиями, предъявляемыми к отбору проб и проведению химического, бактериологического, гельминтологического анализа почв, методам определения физических характеристик грунтов [7; 8].
Комплексный микробиологический анализ проводили в соответствии с методикой [9], осуществляя посев на набор питательных сред для выделения микрофлоры, характерной для исследуемого образца почвогрунта. Для анализа микробоценоза применяли мясопептонный агар, содержание патогенной микрофлоры определяли на селективных средах. Микроскопические исследования проводили с помощью микроскопа «Минимед-501».
Определение содержания бенз(а)пирена в почвогрунте проводили с помощью высокоэффективного жидкостного хроматографа UltiMate 3000 с флуориметрическим детектором по известной методике [10]. Пробоподготовку выполняли по усовершенствованной нами методике, включающей очистку экстракта бенз-а-пирена на оксиде алюминия и безводном сульфате натрия с последующим элюированием смесью хлористого метилена и гексана.
Содержание нефтепродуктов исследовали на инфракрасном фурье-спектрометре ФСМ-1201, снимая спектр экстракта нефтепродуктов относительно чистого четыреххлористого углерода. Показания переводили в значение оптической плотности и по калибровочной кривой определяли концентрацию.
Определение тяжелых металлов проводили атомно-абсорбционным методом на МГА-915. Определение концентраций тяжелых металлов, выходящих за верхние аналитические пределы для образцов почвогрунтов с высоким содержанием элементов, проводили по усовершенствованной нами методике на спектрометре универсальном рентгеновском СУР-01 Renom. Возбуждение рентгеновской флуоресценции проводилось трубкой с медным анодом при напряжении 30 кВ и силе тока 2-2.8 мА в зависимости от образца. Для детектора от характеристического излучения меди использовался ванадиевый фильтр.
Для проведения исследований по определению содержания естественных радионуклидов в образцах почвогрунтов использовался гамма-спектpометpический метод.
Математическая обработка осуществлялась с применением программного комплекса Mathcad.
Результаты исследования и их обсуждение
В качестве объекта исследования были выбраны почвогрунты в пределах участка, отведенного под планируемую застройку в черте г. Брянска Брянской области. Поскольку участок расположен в пределах промышленной зоны, а его территория имела признаки техногенного изменения, требовалось провести оценку степени ее нарушенности и выдать рекомендации о возможности использования в намечаемой хозяйственной деятельности. Так как исследование почвогрунтов являлось одним из основных элементов проводимых инженерно-экологических изысканий, в настоящей работе описан комплексный подход к их анализу.
В ходе рекогносцировочного обследования территории участка были определены точки отбора проб почвогрунта (рис. 1).
В каждой точке было отобрано по 3 образца с различной глубины: 0,2, 0,5, 1 м. Пробы маркировались последовательной нумерацией.
Рис. 1. Схема ситуационного плана расположения участка планируемой застройки
Для выбора методов комплексного исследования почвогрунтов необходимо было сделать общий физический анализ и провести их классификацию [2; 8]. Было установлено, что все отобранные образцы представляют собой несвязный минеральный грунт (песок), загрязненный твердыми коммунальными (ТКО) и промышленными отходами. Среди основных видов ТКО следует выделить пластик, промасленную ветошь, отходы древесины. К промышленным отходам были отнесены фрагменты отработанных масляных фильтров и элементы металлических конструкций, разрушенных коррозией, обнаруженные в точках отбора проб 1 и 5 (рис. 1). Наличие промышленных отходов на обследуемой территории объясняется, по-видимому, граничащим с ней предприятием по ремонту дизелей. На основании полученных данных было принято решение провести микробиологический анализ, исследование на содержание нефтепродуктов и бенз-а-пирена, определение тяжелых металлов в образцах отобранных проб почвогрунтов.
Результаты микробиологических исследований приведены в табл. 1. Установлено, что микробиологическое сообщество во всех пробах почвогрунтов представлено бактериями родов Bacillus и Actinomyces. Количество обнаруженных бактерий зависит от глубины взятия пробы – уменьшается от поверхности к более глубоким уровням (табл. 1).
Из данных, представленных в табл. 1, видно, что содержание кишечной палочки и энтерококков составляет менее 1 КОЕ/г при разных разведениях для всех проб почвогрунта, не превышая установленные значения.
В процессе гельминтологических исследований яиц гельминтов не выявлено. Полученные микробиологические показатели изученных образцов почвогрунтов позволяют рекомендовать рассматриваемую территорию для планируемой застройки.
Поскольку рекогносцировочное обследование выявило следы загрязнения территории горюче-смазочными материалами, были проведены исследования по определению нефтесодержащих веществ в отобранных образцах почвогрунта.
Нефть является сложным комплексом органических соединений, каждое из которых представляет потенциальную опасность для окружающей среды. Однако загрязнение имело незначительный локальный характер, в связи с чем был выбран метод валового определения содержания нефтепродуктов [11].
Вследствие того что бенз-а-пирен проявляет канцерогенные свойства, аккумулируется в почвогрунтах, способен накапливаться в живых организмах [11], нами была обоснована необходимость его определения.
Результаты исследований почвогрунтов на содержание нефтепродуктов и бенз-а-пирена представлены в табл. 2.
Таблица 1
Результаты микробиологического исследования почвогрунтов
Нумерация пробы |
Показатель |
Усредненные значения КОЕ/г (различные разведения) |
|
10-2 |
10-3 |
||
1, 4, 7, 10, 13, 16 |
Bacillus |
15,4 |
4,6 |
Actinomyces |
9,0 |
2,7 |
|
2, 5, 8, 11, 14, 17 |
Bacillus |
10,1 |
4,0 |
Actinomyces |
6,3 |
2,4 |
|
3, 6, 9, 12, 15, 18 |
Bacillus |
8,3 |
2,2 |
Actinomyces |
4,1 |
1,4 |
|
1, 4, 7, 10, 13, 16 |
Индекс бактерий группы кишечной палочки |
Менее 1 |
Менее 1 |
Индекс энтерококков |
Менее 1 |
Менее 1 |
|
2, 5, 8, 11, 14, 17 |
Индекс бактерий группы кишечной палочки |
Менее 1 |
Менее 1 |
Индекс энтерококков |
Менее 1 |
Менее 1 |
|
3, 6, 9, 12, 15, 18 |
Индекс бактерий группы кишечной палочки |
Менее 1 |
Менее 1 |
Индекс энтерококков |
Менее 1 |
Менее 1 |
Таблица 2
Содержание нефтепродуктов и бенз-а-пирена в образцах почвогрунта
№ пробы |
Содержание, мг/кг |
№ пробы |
Содержание, мг/кг |
||
нефтепродуктов |
бенз-а-пирена |
нефтепродуктов |
бенз-а-пирена |
||
1 |
181,5 |
0,0095 |
10 |
15,9 |
0,0013 |
2 |
53,8 |
0,0007 |
11 |
9,2 |
0,0008 |
3 |
22,7 |
0,0003 |
12 |
1,4 |
0,0003 |
4 |
85,3 |
0,0003 |
13 |
176,3 |
0,0138 |
5 |
33,4 |
0,0001 |
14 |
21,1 |
0,0094 |
6 |
10,3 |
0,0001 |
15 |
2,3 |
0,0009 |
7 |
30,7 |
0,0009 |
16 |
65,4 |
0,0083 |
8 |
7,4 |
0,0008 |
17 |
28,8 |
0,0013 |
9 |
6,6 |
0,0003 |
18 |
3,5 |
0,0005 |
Из полученных данных видно, что в пробах № 1, 13 (соответствуют точкам отбора проб 1 и 5) превышены значения, установленные СП 11-102-97 «Инженерно-экологические изыскания для строительства» по содержанию нефтепродуктов. Превышений предельно допустимых концентраций по бенз-а-пирену не установлено. По содержанию нефтепродуктов почвогрунты относятся к малозагрязненным.
В рамках комплексного анализа почвогрунтов обследуемой территории было проведено определение содержания тяжелых металлов, так как они представляют повышенную опасность для окружающей среды [12].
Поскольку в почвогрунтах исследуемого типа ионы тяжелых металлов могут содержаться в виде солей карбонатов, галогенидов, сульфатов и сульфидов, которые предположительно имеют различную растворимость, необходимо определять как валовое их содержание, так и концентрацию подвижных форм. Результаты исследований содержания тяжелых металлов в исследуемых образцах почвогрунта представлены на рис. 2.
Из представленных данных видно, что наблюдается превышение значений ПДК по Zn и Сu в 1,2 и 1,5 раза соответственно, что позволяет отнести почвогрунт к слабозагрязненным, а обследуемый участок к пригодным для промышленной застройки.
а)
б)
Рис. 2. Результаты анализа почвогрунта обследуемой территории: а) валовое содержание тяжелых металлов в пробах почвогрунта; б) содержание тяжелых металлов в подвижной форме в пробах почвогрунта
Таблица 3
Средние значения природных радионуклидов в образцах почвы обследуемой территории
№ пробы |
Содержание радионуклидов, Бк/кг, среднее |
|||
Ra-226 |
Th-232 |
К-40 |
Аэфф, уд. эффективная активность |
|
2, 5, 8, 11, 14, 17 (мокрая) |
11,1 ± 7,3 |
2,7 ± 4,3 |
72,2 ± 36,3 |
21,1 ± 9,8 |
2, 5, 8, 11, 14, 17 (сухая) |
6,8 ± 6,7 |
1,9 ± 4,2 |
104,5 ± 39,9 |
18,7 ± 9,4 |
1, 4, 7, 10, 13, 16 (мокрая) |
10,3 ± 7,7 |
2,2 ± 4,7 |
78,6 ± 40,2 |
20,3 ± 10,5 |
1, 4, 7, 10, 13, 16 (сухая) |
9,2 ± 7,8 |
3,1 ± 4,9 |
100,9 ± 43,6 |
22,3 ± 10,8 |
Среднее |
9,35 ± 7,3 |
2,48 ± 4,4 |
89,05 ± 40,0 |
20,6 ± 10,1 |
В связи с тем что территория Брянской области пострадала при аварии на Чернобыльской АЭС [13], нами было проведено радиологическое обследование почвогрунтов. Результаты измерения содержания удельной активности естественных радионуклидов в образцах почвы представлены в табл. 3.
Анализ данных, представленных в таблице 3, показывает, что суммарное содержание естественных радионуклидов не превышает требований СанПиН 2.6.1.2523-09 (НРБ-99/2009). Содержание радия-226, являющегося родоначальником радона – 222, соответствует средним значениям радия в песках различных месторождений.
Таким образом, по результатам проведенного комплексного анализа почвогрунтов можно сделать вывод о возможности промышленной застройки обследуемой территории.
Выводы
На конкретном примере описаны принципы и методология физико-химического, микробиологического и радиологического исследования почвогрунтов при проведении инженерно-экологических изысканий на урбанизированной территории.
Проведен комплексный анализ почвогрунтов, по результатам которого сделана оценка возможности использования обследуемой территории для последующей застройки.
Усовершенствованы методики пробоподготовки для определения содержания в почвогрунтах бенз(а)пирена и подвижных форм тяжелых металлов, а также методика определения концентраций тяжелых металлов, выходящих за верхние аналитические пределы для образцов почвогрунтов с высоким содержанием элементов.
Описанный в работе подход к комплексному анализу почвогрунтов может быть использован при проведении инженерно-экологических изысканий для определения возможности намечаемой хозяйственной деятельности.