Гумусовые вещества – это молекулярный ансамбль со сложной системой, подчиняющейся стохастическим законам развития [1]. Гуминовые вещества широко распространены в почвах, природных водах, а также в донных осадках [2]. Они являются темноокрашенными аморфными продуктами трансформации отмершей растительности и составляют до 90 % органического вещества почв [3] – главного пула углерода органического в биосфере [4]. Характеристики макромолекул гуминовых веществ зависят от гидротермических условий их формирования. Они содержатся в составе органического вещества биокосных тел, их можно назвать главной составляющей этого вещества, они имеют наиболее термодинамически устойчивую и естественную форму, которая способствует их сохранению в биосфере. Гуминовые вещества по своей экологической важности занимают центральное место в составе органического вещества почв, выполняя важнейшие функции [5]. Органическое вещество является связующим звеном в эволюции живой и неживой материи.
Процесс гумусообразования в мерзлотных почвах специфичен. Суровые биоклиматические условия Витимского плоскогорья способствовали формированию мерзлотных черноземов с характерными особенностями содержащихся в них органических веществ. Наличие мерзлотного экрана, короткий вегетационный период, а также определенный состав органического вещества, которое поступает в почву, накладывают отпечаток на процессы формирования гумуса. Наличие в почвенном профиле мерзлоты обусловливает такой процесс, как криогенная иммобилизация гуминовых веществ по криогенным трещинам, в результате чего гумус практически выводится из активного биологического круговорота, т.е. консервируется на значительной глубине, этим объясняется снижение плодородия мерзлотных почв.
От гуминовых кислот зависят особенности водных, физических, химических и тепловых свойств почвы, поэтому можно их считать агрономически важным и ценным компонентом почвенного гумуса. В связи с этим возникает интерес к исследованию гуминовых кислот, от которых зависят плодородие почвы и ее устойчивое функционирование.
Цель исследования – изучить особенности химической структуры гуминовых кислот мерзлотных черноземов юга Витимского плоскогорья, функционирующих под целиной и пашней.
Практическая значимость: полученные данные дополнят общую базу данных по характеристике гуминовых кислот мерзлотных черноземов, а также послужат основой для корректирования показателей гумусного состояния почв в мерзлотных зонах.
Материалы и методы исследования
Объектом исследования были препараты квазиглеевых черноземов юга Витимского плоскогорья.
Черноземы квазиглеевые формируются под лугово-степными растительными ассоциациями на промороженных аллювиально-лимнических фациальных комплексах мерзлотной лесостепи. Характеристики: мощность гумусового горизонта – до 24 см, тяжелосуглинистый гранулометрическим состав. Сорг = 4,0 %, резко уменьшаясь вниз по профилю почвы до 0,9 %; сумма обменных оснований 36,5 моль-экв/100 г почвы. В верхней части профиля реакция среды нейтральная (рН 7,3), в нижней – слабощелочная. Общего азота содержится 0,81–0,99 %.
В исследуемом регионе климат можно охарактеризовать как резко континентальный, сумма активных температур равна 1350–1750 °С, а период вегетации растительности – всего 80–100 дней. Регион исследования характеризуется тем, что среднегодовые температуры – отрицательные, сокращен теплый период, мало снега и глубоко промерзают почвы, отмечаются значительные колебания амплитуд температур в разных циклах (сутки, сезон, год), а также высокая интенсивность ультрафиолетового излучения и переменный режим увлажнения. На гидротермический режим почв огромное влияние оказывает многолетняя мерзлота. Режим температуры квазиглеевых черноземов относят к мерзлотному типу, континентальному подтипу. Следует отметить низкую теплообеспеченность исследуемых почв, особенно весной и ранним летом. Этим создаются жесткие условия для роста и развития растительности, что, в свою очередь, влияет на почвенные процессы, при этом формируются генетически самобытные мерзлотные почвы.
Водный режим черноземов квазиглеевых характеризуется дефицитом продуктивной влаги в верхних горизонтах в июне–июле, особенно в годы с засухой, из-за высокой скорости испарения, которое в 5–7 раз превышает сумму выпавших осадков. Этот недостаток почвенной влаги значительно ослаблен за счет оттаивания почвенной влаги.
Препараты гуминовых кислот выделяли методом экстракции [6]. Содержание золы в препаратах варьировало от 6 % до 11 %, что допустимо. В препаратах определен элементный состав на анализаторе Perkin Elmer. Спектры 13С-ЯМР макромолекул гуминовых кислот регистрировали на спектрометре Bruker DRX-500 (100,614 МГц) в Институте органической химии СО РАН (Новосибирск). Для определения кислых функциональных групп использовали метод А.Ф. Драгуновой, карбоксильных групп – метод Т.А. Кухаренко. По разности рассчитывались фенольные гидроксилы.
Результаты исследования и их обсуждение
А. Функциональные группы
Важное место в структурных фрагментах гуминовых кислот занимают функциональные группы, от них зависит реакционная способность гуминовых кислот. Для карбоксильных и гидроксильных групп характерны кислые свойства, показывающие соотношение структурных фрагментов, благодаря им можно произвести оценку реакционной способности. При взаимодействии гуминовых кислот с различными минеральными удобрениями, тяжелыми металлами, загрязнителями почв важными являются такие характеристики, как емкость катионного обмена и способность адсорбировать различные вещества. 2/3 общего почвенного поглощения обусловлены гуминовыми кислотами. Поглотительная способность катионов гуминовых кислот обусловлена заменой водорода карбоксильных групп. Следует отметить, что Н-фенолгидроксильных групп может заместиться катионами только при щелочной реакции среды. Таким образом, количество функциональных групп – эта важный показатель для гуминовых кислот, его изучение дает возможность оценки плодородия почв.
Содержание кислых функциональных групп в гуминовых кислотах исследуемых почв равно 685 мг-экв/100 г. По данным элементного состава можно рассчитать степень окисленности, которая составила + 0,23. Емкость поглощения гуминовой кислоты (или общее содержание карбоксильных групп) составило 501 мг-экв/100 г почвы, величина фенольных гидроксилов достигала – 184.
Преобладание карбоксильных групп в гуминовых кислотах квазиглеевых черноземов, скорее всего, связано с разнообразными сочетаниями процессов окисления и восстановления в почвах. В местах, где сильнее выражены процессы восстановления, образуются соединения, которые обогащены гидроксильными группами. В формировании алифатической части молекул в большей степени принимают участие углеводные компоненты, а также вещества вторичного генезиса – это оксикислоты, альдегидо- и кетокислоты, производные оксибензолов, обогащенные гидроксильными группами.
Следует отметить достаточно сильную выраженность окислительных процессов в исследуемых квазиглеевых черноземах; повышение доли карбоксилов происходит в результате того, что окисляются гидроксилы. Многоосновные органические кислоты участвуют в формировании алифатической части гуминовых кислот.
Таким образом, степень адсорбционной и реакционной способностей гуминовых кислот черноземов квазиглеевых достаточно высокая и находится на одном уровне с показателями аналогичных почв Западной Сибири.
Б. Спектроскопия молекулярных структур ГК методом 13С-ЯМР
Считается, что среди органического вещества почв гуминовые кислоты отличаются высокой биологической и химической устойчивостью. Прямым отражением условий образования гумуса являются характерные структура и состав гуминовых кислот. С помощью 13С-ЯМР спектроскопии возможно количественно определить структурные и функциональные параметры гуминовых кислот, использовать этот метод можно для оценки изменения гуминовых кислот при воздействии различного рода факторов [7], а также для решения задач, которые связаны с процессами потери гумуса агрогенных почв. Следует отметить, что в исследуемых почвах при вовлечении почв в пахоту потери достигали 30 т/га.
13С-ЯМР спектроскопия дала возможность получить данные в определенных интервалах спектров резонансные сигналы атомов углерода, которые характеризуют признаки строения гуминовых кислот: фрагментов – алифатических и ароматических функциональных групп: альдегиды, кетоны и хиноидные структуры, спирты, углеводы и фенолы. Химический сдвиг (ppm), относящийся к сигналу ЯМР стандартного вещества, позволил определять принадлежность атомов углерода к определенным фрагментам молекул. В спектрах черноземов квазиглеевых имелось различие в распределении интегральной интенсивности сигналов, которые регистрировались. Выявлено, что в агрогенных почвах доля алифатического фрагмента углерода ниже, чем в целине. Можно отметить, что большая доля углерода представлена карбоксильными группами, что показывают окислительные процессы (табл. 1). Соотношение углерода ароматических структур к углероду алифатических (AR:AL) используется для того, чтобы оценить количественные параметры структурных фрагментов гуминовых кислот. Сигналы в области 105–165 и 185–200 ppm характерны для ароматических атомов углерода, а 0–105 и 165–185 ppm – для алифатических. Отношение ароматических атомов к алифатическим атомам углерода гуминовых кислот черноземов квазиглеевых являлось идентичным как на целине (1,31), так и на пашне (1,32), что свидетельствует о том, что они в агрогенном обороте находятся относительно небольшое время. Показатель AR:AL > 1, что говорит о преобладании ароматических фрагментов. Показатель общей ароматичности (fa), т.е. относительного содержания ароматических атомов углерода, был достаточно высоким в исследуемых почвах, что связано с тем, что гуминовые кислоты квазиглеевых черноземов характеризуются наиболее конденсированной структурой макромолекул.
Следует отметить, что для гуминовых кислот целинных черноземов квазиглеевых характерна достаточно высокая ароматичность, в структуре гуминовых кислот почв под влиянием агрогенной обработки происходит уменьшение алифатического углерода как аминометоксильных, так и альдегидных групп в связи с преимуществом улучшения биологической активности в пахотных вариантах. Следует отметить, что не исчерпаны возможности их дальнейшей трансформации.
В. Элементный состав
При изменении биотермодинамических условий формирования гуминовых кислот, гранулометрического состава, гидроморфизма и оглеения, содержания карбонатов и почвообразующей породы гуминовые кислоты при сохранении устойчивости элементного состава также откликаются на внешние факторы.
Количество углерода в соединении определяет структуру и состав гуминовых кислот. Эта величина в черноземах Республики Казахстан, европейской части России и Западной Сибири составила 55,8–58,6 ат. % [8, 9]. В гуминовых кислотах черноземов квазиглеевых углерода содержится 37,8–38,7 ат. % (табл. 2), что является результатом ослабления реакции конденсации исходных веществ, а также усиления гидролитического распада новообразованных гуминовых кислот. В итоге мы можем наблюдать увеличение алифатических цепей, что приводит к уменьшению содержания углерода в их составе. Биологическая трансформация отмерших растительных остатков в мерзлотных условиях сокращена во времени, в результате чего происходят их медленное разложение и длительная консервация в слабогумифицированном виде. Таким образом, исследуемые молекулы гуминовых кислот мерзлотных квазиглеевых черноземов менее обуглерожены по сравнению с молекулами гуминовых кислот черноземов европейской части России и Западной Сибири (табл. 2).
В макромолекуле гуминовой кислоты атомов водорода содержится 25,3 ат. %, что объясняется реакцией среды со сдвигом в щелочную сторону. Кислород содержится в препаратах гуминовых кислот в количестве 26,8 ат. %.
В составе гуминовых кислот азот содержится в достаточно низких количествах (2,1 ат. %), что является следствием обедненности растительности азотом. Роль соединений, содержащих азот, в процессах гумификации выражает показатель С:N, он говорит о низком содержании азота в гуминовых кислотах черноземов квазиглеевых (табл. 2). Тем не менее это отношение (17,8) равно показателю черноземов европейской части России (17,7), что связано с достаточно низкими количественными данными углерода в макромолекуле гуминовых кислот квазиглеевых черноземов.
Таблица 1
Молекулярные фрагменты гуминовых кислот черноземов квазиглеевых, %
Вариант |
Алифатические |
Амино- и метоксильные |
Полисахариды |
Ароматические |
Карбоксильные |
Альдегидные |
AR:AL |
fa |
Целина |
17,8 |
6,0 |
6,4 |
55,4 |
12,7 |
16 |
1,31 |
0,55 |
Пашня |
14,1 |
4,8 |
8,9 |
56,0 |
16,2 |
1,0 |
1,32 |
0,56 |
Таблица 2
Элементный состав гуминовых кислот черноземов
Подтипы черноземов |
Доля, ат. % |
H:C |
O:C |
C:N |
Степень |
|||
C |
H |
N |
O |
бензоидности |
||||
Квазиглеевый чернозем |
37,8 |
25,3 |
2,1 |
26,8 |
0,67 |
0,71 |
17,8 |
23,0 |
Черноземы европейской части России [8, 9] |
42,5 |
35,2 |
2,4 |
19,9 |
0,83 |
0,47 |
17,7 |
32,4 |
Важными показателями уровня различий в макромолекулах гуминовых кислот при оценивании условий образования гумуса являются показатель Н:С и степень бензоидности.
Величина Н:С в макромолекулах гуминовых кислот исследуемых почв составляет 0,67, что объясняется оптимальными условиями влажности. Следует отметить, что уменьшение величины Н:С связано с преобладанием углерода в ароматической части молекулы, что привело к повышению степени бензоидности, показатель составил 23, что ниже средней величины степени бензоидности для черноземов европейской части России [8, 10].
Сравнение степени бензоидности с показателями других регионов показало, что максимальным был показатель в почвах европейской части России, а самым низким – в Забайкалье.
Изучение элементного состава гуминовых кислот исследуемых почв свидетельствовало о том, что мерзлотные процессы вносят изменения в их химическую структуру. Выявлено, что в мерзлотных системах образуются макромолекулы гуминовых кислот с достаточно низким содержанием углерода и азота в сравнении с элементным составом черноземов европейской части России.
Низкие температуры и достаточная влажность приводят в квазиглеевых черноземах к тому, что в них формируются гуминовые кислоты в основном с неразвитыми боковыми компонентами, что связано с гидролитическим распадом, последний ответственен за относительное повышение количества ароматических фрагментов макромолекул гуминовых кислот. Наблюдается выполнение известной закономерности – при уменьшении величины Н:С увеличивается степень бензоидности.
Заключение
Результаты исследования свидетельствуют о том, что мерзлота влияет на химическую структуру макромолекулы гуминовых кислот посредством образования в профиле почвы мерзлотного экрана, тормозящего все биологические, физические и химические процессы. Реакционная способность и адсорбционные свойства гуминовых кислот черноземов квазиглеевых высокие. Гуминовые кислоты целинных квазиглеевых черноземов с высокой ароматичностью, сельскохозяйственная обработка привела к снижению алифатического углерода за счет уменьшения альдегидных, аминных, метоксильных структур и, наоборот, увеличения карбоксильных и полисахаридных групп. Рост последних, по-видимому, обусловлен возрастанием степени окисленности.
Работа выполнена в рамках темы Госзадания № госрегистрации: AAAA-A 17-117011810038-7 «Эволюция, функционирование и эколого-биогеохимическая роль почв Байкальского региона в условиях аридизации и опустынивания, разработка методов управления их продукционными процессами».