В этих веществах наблюдается большая подвижность ионов натрия при комнатной температуре, а при температурах 130 - 200К обнаружен фазовый переход, который интерпретируется как переход в суперионное состояние. Помимо скачка электропроводности в процессе перехода наблюдается также λ - точка в температурной зависимости теплоёмкости, характерная для фазовых переходов первого рода. Вместе с тем теория твердых электролитов слабо разработана вообще и для Na-β-глинозёмов в частности. Так, не известна функция распределения плотности локализованных состояний в запрещенной зоне, не найдены легирующие добавки оптимальным образом создающие распределение кластерных группировок (AlO4)5- и (AlO6)9- и стабилизирующие неустойчивую кристаллическую структуру.
Целью данной работы являлось исследование влияния примесных атомов с различной электронной структурой на диэлектрические свойства Na-β-глинозёмов. В качестве объекта исследования были выбраны образцы Na-β-глинозёма легированного Cu, Y и Pb в количестве 3-6 ат.%. Образцы для измерения готовились по методике описанной в [1]. Предполагалось что ионы Cu и Y, как элементы с малой энергией вырождения электронных уровней, могли повлиять на электронную подсистему твердого электролита; ионы Pb могли изменить фононный спектр.
Диэлектрические измерения проводились на частотах 102, 103, 104 и 106 Hz. На частотах 102, 103, 104 Hz использовался измеритель импеданса E7-14, на частоте 106 Hz - E7-12. В качестве электродов использовались электроды из возжонного серебра. Исследования проводились в температурном интервале 300 - 600 К. Температурная стабилизация составляла порядка 1 K. Перед измерениями для удаления адсорбированной воды образцы прогревались и выдерживались около часа при температуре порядка 400 К.
Как показывают исследования, при комнатной температуре диэлектрическая проницаемость на частоте 102 Гц имеет значения порядка 103 и с ростом частоты убывает до значений порядка 50 на частоте 106 Гц. Причем частотную зависимость диэлектрической проницаемости для Na-β-глинозёмов нельзя описать простой формулой Дебая, что говорит о некотором наборе поляризационных механизмов с различными временами релаксации. Используя аналитическую зависимость для диэлектриков с большим числом времен релаксаций:
(1)
получаем, что для совпадения экспериментальных точек с теоретической кривой (1) при комнатной температуре приходится положить что: wt >>1, De >> e¥, a = 0,76 для частот 102 ¸103 Гц и a = 0,74 для частот 103¸106 Гц. С ростом температуры происходит рост e, tgd и уменьшение коэффициента a (см. таблицу).
Таблица 1. Зависимость роста температуры и роста e, tgd и уменьшение коэффициента a
T.К |
ε′ (102 Гц) |
ε′ (103 Гц) |
ε′ (104 Гц) |
a |
295 |
685 |
335 |
186 |
0,75 |
375 |
1846 |
661 |
331 |
0,71 |
475 |
55812 |
8526 |
2150 |
0,41 |
575 |
412943 |
34549 |
5889 |
0,29 |
При введении примесей появляется дополнительный механизм релаксации, что хорошо заметно на кривых tgd(w).
Рисунок 1. Зависимость tgδ от T для Na-β-глинозёма легированного Cu
Для описания дисперсии ε Na-β-глинозёмов легированных Cu, Y и Pb, в которых спектр является размытым, важен параметр α, характеризующий распределение времен релаксации. Он может быть найден из экспериментальных данных.
На рисунках 2 - 4 представлены полученные зависимости α от Т. При температурах 380 - 400 K наблюдаются пики, которые возможно связаны с наличием кристаллизационной воды в образцах.
Рисунок 2. α(T) для Na-β-глинозёма легированного Cu, Pb и Y
Зная температурные зависимости tgδ при различных частотах можно получить величины потенциального барьера для исследуемых веществ, воспользовавшись формулой:
(2)
Произведя вычисления получаем следующие значения:
UPb=0,85 эВ, UCu=0,91 эВ, UY=1,51 эВ.
На основании полученных данных можно сделать вывод, что при температурах ниже 600 К в Na-β-глиноземах необходимо учитывать многоосцилляторные процессы. При температурах выше 600 K эти процессы перестают действовать и становится возможным описать частотную зависимость диэлектрической проницаемости простой формулой Дебая.
СПИСОК ЛИТЕРАТУРЫ
- Левицкий Ю.Т., Маловицкий Ю.Н., Пушкин А.А. Электронная электропроводность в системе Na2O∙nAl2O3 - Y2O3. Неорганические материалы. - 2003, №9. - С. 971.