Наряду с "чисто" калийными удобрениями, содержащим 98-99% KCl, значительный интерес у потребителей вызывает комплексные удобрения, содержащие помимо KCl добавки MgCl2, MgO и микроэлементы. /3/ Соли и соединения магния оказывают благотворное влияние на жизнь растений. Действие магния приводит к значительным изменениям в метаболизме растений и водном режиме. Магний действует, прежде всего, на изменение структуры и свойств белков, а через них на водный режим растений. На изменения, обусловленные прямым действием магния, позднее накладываются изменения, происходящие при включении его в биохимические процессы. В свою очередь физиолого - биохимические процессы зависят от условий окружающей среды. В условиях, неблагоприятных по водообеспечению, магний увеличивает сосущую силу, водоудерживающую способность, количество связанной воды, а в некоторых случаях одновременно и количество наиболее подвижной воды. В условиях же благоприятных, наоборот, данный элемент способствует снижению водоудерживающей способности и сосущей силы, увеличивает количество подвижной воды, что может служить фактором усиления многих физиологических процессов /4/.
Исследования и испытания показали, что весьма перспективным исходным сырьем для производства комплексных минеральных удобрений являются хлоридные отходы магниевого производства, в частности шламы карналлитовых хлораторов, отработанные расплавы процесса электролиза карналлитового сырья и др /7/. Ежегодно на Российских предприятиях, выпускающих магний (ОАО «АВИСМА - титано-магниевый комбинат», г.Березники и ОАО «Соликамский магниевый завод», г.Соликамск) образуется более 100 тысяч тонн таких отходов /5,6/. В качестве товарной продукции в последнее время реализуется не более 20-30 % образующихся хлоридных солевых отходов производства. Остальное количество отработанных расплавов после их охлаждения и отверждения вывозится на свалку (полигон) промышленных отходов. Это приводит к безвозвратным потерям ценного техногенного сырья и влечет за собой загрязнение окружающей природной среды, засоление грунтовых и почвенных вод в связи с водной и ветровой эрозиями.
Практической реализацией отходов магниевого производства в качестве комплексных минеральных удобрений препятствует отсутствие высокопроизводительных аппаратов, кристаллизаторов и аппаратурно-технологических схем, обеспечивающих кристаллизацию и гранулирование отработанных хлоридных расплавов с получением товарных продуктов в форме однородных по размеру, прочных гранул. Попытки решить этот вопрос (см. например, /6/) к сожалению пока не увенчались успехом. Разработанные ранее конструкции различных грануляторов и/или кристаллизаторов либо характеризовались малой производительностью, либо в качестве конечной продукции давали возможность получать отработанные расплавы в форме полидисперсных чешуек неправильной формы и различные гранулометрические составы, легко разрушающиеся при транспортировке, затаривании и разгрузке, и в связи с этим не удовлетворяющие требованиям потребителей. Нельзя также признать удовлетворительной технологию, освоенную на одном из малых предприятий и заключающуюся в дроблении крупных кусков (блоков) охлажденного и отвержденного расплава и последующего грохочения и классификации. При таком методе до 30-40% исходного сырья переходит в тонкодисперсную и пылевую фракции (0,05-1 мм) не удовлетворяющих требованиям потребителей.
Для решения проблемы организации промышленного производства по получению комплексных минеральных удобрений на основе использования техногенного сырья - отходов магниевого производства проведен систематический сравнительный анализ эффективности известных технических решений, выполнен комплекс исследовательских работ, теплотехнических и экономических расчетов, на основании которых разработан (Патенты РФ на ПМ по заявкам №2004135170/17, 2004135257/17, 2005105536/17) ряд новых конструкций устройств и установок, аппаратурно-технологических и поточных линий для кристаллизации и гранулирования шламов карналлитовых хлораторов, отработанных электролитов процесса электролиза карналлитового сырья. В основу новых конструкций положен вращающийся барабанный кристаллизатор-гранулятор, имеющий систему подвода воды, охлаждающей верх внутренней поверхности барабана, узел слива нагретой воды из нижней зоны барабана, устройство для равномерной подачи исходных расплавов (до 900ºС) на внешнюю поверхность барабана, приспособления ("ножи") для съема закристаллизовавшегося расплава с поверхности барабана, бункеры-сборники готового продукта, транспортер и узел затаривания партий противогололедных препаратов, например в крафт-мешки. Одной из характерных особенностей конструкции кристаллизаторов-грануляторов является то, что на их поверхности равномерно расположены трапецеидальные выступы и канавки, обеспечивающие формирование гранул вполне определенного размера.
Предложенная конструкция кристаллизатора-гранулятора в совокупности со вспомогательным оборудованием, входящим в состав аппаратурно-технологического комплекса, обеспечивает утилизацию отходов магниевого производства - отработанных хлоридных расплавов в форму гранулированных продуктов, реализуемых в качестве комплексных минеральных удобрений, пользующихся устойчивым спросом у потребителей.
СПИСОК ЛИТЕРАТУРЫ
- Кашкаров О.А., Соколов И.Д. Технология калийных удобрений. Л.: Химия, 1978, 246с.
- Позин М.Е. и др. Технология минеральных солей. ч. I. Л., Химия, 1970, 1558 с.
- Петербургский А.В., Смирнов А.П. Минеральные удобрения. М., Госагропромиздат, 1989. 95 с.
- Шкляев Ю.Н. Магний в жизни растений. М., Наука. 1981. 96с.
- Эйдензон М.А. Металлургия магния и других легких металлов. М., Металлургия, 1974. 200с.
- Свалов Г.Н. Исследования в области переработки отработанного электролита магниевого производства на удобрение. Автореферат. дис. к.т.н. Л.: ВАМИ, 1970. 29 с.
- Язев В.Д., Кудрявский Ю.П., Свалов Г.Н. Способ переработки солевых отходов магниевого производства.//А.с. СССР №1114670 по заявке № 3501861 с приор. от 15.10.1982. МПК С05D5/00; зарег. и опубл.: 23.09.1984. Бюл. №35.