Биопластический материал «Гиаматрикс» - это эластично-упругая плёнка, разработанная на основе полимера гиалуроновой кислоты (патент РФ №2367476 от 21.03.2008г.). Гиалуроновая кислота (природный мукополисахарид) в обычном состоянии представляет собой вязкий гидрогель.
Целью настоящего исследования явилось построение биоинженерной модели полимера гиалуроновой кислоты с помощью метода фотохимического наноструктурирования.
Фотохимические свойства гиалуроновой кислоты малоизучены. В отличие от большинства других полисахаридов гиалуроновая кислота содержит в боковых цепях амидокетогруппы NH-(С=О)-CH3. Эти группы термически устойчивы, однако могут быть активны фотохимически. В ультрафиолетовых спектрах наблюдается слабая полоса поглощения в области 260 нм. Карбонильные группы поглощают в ультрафиолетовой области спектра и, переходя в возбужденные состояния, претерпевают химические превращения с достаточно высокой эффективностью. В алифатических кетонах, содержащих карбонильные группы, известны четыре типа первичных реакций: α-расщепление, отщепление атома водорода, образование комплексов с переносом заряда и элиминирование α-заместителей. При фотохимическом α-расщеплении (реакция Норриша I) образуются активные свободные радикалы, способные образовать новые химические связи в местах пространственного сближения цепей гиалуроновой кислоты. Именно эти сшивки образуют устойчивый трехмерный нанокаркас «Гиаматрикса». Радикалы, не участвующие в образовании сшивок, быстро исчезают в результате обратной рекомбинации и не влияют на химические, биологические и другие свойства материала.
Фотохимическая сшивка этих линейных полимеров гиалуроновой кислоты формирует основу устойчивого пространственного каркаса, то есть сетку с ячейками, размеры которых варьируются от 10 до 100 нм в зависимости от условий получения. Пространственные наноячейки формируются не только редкими сшивками, но и пространственными сближениями нанонитей, где возможно образование лабильных водородных связей. Такая организация пространственной наноструктуры комбинацией устойчивых и лабильных связей делает биопластический материал пластичным, позволяет ячейкам подстраиваться под размеры включаемых молекул и допускает относительно свободную диффузию кислорода.
Биоинженерная модель, построенная с помощью метода фотохимического наноструктурирования, придаёт пластическому материалу следующие преимущества:
- оптимальные биоинженерные свойства (эластичность, адгезия, гидрофильность и др.);
- бесперевязочное ведение раневого процесса (у аналогов такого свойства нет);
- способность рассасывания в ране по мере её заживления (у аналогов такого свойства нет);
- удобство в применении;
- длительный (до 5 лет) срок годности.
Наноструктурированная биоинженерная модель пластического материала «Гиаматрикс» доказывается:
1) физико-химическими свойствами: способностью впитывать влагу из внешней среды и из мест поражения, возможность диффузии малых молекул к месту поражения, например, кислорода, и изолирует места поражения от внешней микрофлоры,
2) непосредственными изображениями наноструктуры, полученными методами атомно-силовой микроскопии.
В наноструктуре материала имеются места сшивок и пересечений, а также свободное пространство между ними. Поперечно-полосатое изображение свидетельствует о надмолекулярной организации полимеров гиалуроновой кислоты из-за межмономерных водородных связей, вследствие чего диаметр нанонитей превышает поперечные размеры молекул линейного полимера.
Таким образом, построение биоинженерной модели на основе метода фотохимического наноструктурирования является перспективным направлением для создания пластических материалов.