В Мурманской области имеются огромные неиспользованные ресурсы биотоплива, но, к сожалению, теплоэнергетические предприятия России имеют слабые традиции использования биотоплива в их производствах. В этой связи, заслуживает внимания первый реализованный в области проект по использованию биотоплива в посёлке Верхнетуломский Кольского района, который был важными демонстрационным проектом, способствующими тому, что в настоящее время в регионе реализуются ещё два. Такой подход способствует увеличению объёмов использования биотоплива в регионе. В котельной поселка Верхнетуломский были установлены три паровых котла типа ДКВР-4/13, которые использовали в качестве топлива привозной мазут. В посёлке имеется лесопильный завод, обладающий большими объёмами древесных отходов производства. За счёт строительства котельной, работающей на биотопливе, произошла замена в потреблении нефтепродуктов и нашли решение практические проблемы охраны окружающей среды, связанные с размещением и утилизацией древесных отходов.
При реализации проекта было предусмотрено подключение дополнительного оборудования для сжигания древесных отходов по сетевой воде в существующую технологическую схему котельной. При этом был осуществлён вывод в резерв двух котлов и подогревателей сетевой воды. Оборудование для сжигания древесных отходов было приобретено в Швеции.
При проектировании котельной, с целью оптимизации структуры системы управления и определения параметров регуляторов, были разработаны математические модели многосвязной системы. Объект управления - водогрейный котёл, является сложным, имеющим шесть контуров управления. Наибольший интерес представляет контур управления производительности котла, функциональная схема которого представлена на рис.1.
Древесные отходы, используемые как топливо, доставляются на котельную автотранспортом и ссыпаются в бункер опилок. На дне бункера находятся толкатели, которые ворошат опилки и продвигают их к шнекам бункера. Привод этих толкателей - гидравлический. Шнеки отбирают необходимое количество топлива и подают его в систему дымоходов для предварительной сушки дымовыми газами. После прохождения топлива по дымоходу производиться его отделение от газов в циклоне и передача на транспортные шнеки. Топливо через дозаторы поступает в камеру сгорания по двум шнекам подачи, которые вращаются постоянно.
Рисунок 1. Функциональная схема САУ производительности котла.
Уровень топлива в камере сгорания держится постоянным посредством разработанных измерителей уровня и контура ситуационного управления дозаторами подачи топлива. Воздух в камеру сгорания подается от двух вентиляторов: первичного - в нижнюю часть и вторичного в верхнюю часть. Регулирование производительности котла производится управлением шиберов вентиляторов. Дымовые газы из камеры сгорания поступают в жаротрубный водогрейный котел. Котел имеет три хода газов и оборудован системой обдува трубок от сажи. На выходе из котла установлен регулятор разряжения в топке. Этот регулятор также распределяет дымовые газы в дымовую трубу и систему сушки топлива. Дымосос установлен на участке дымохода после циклонов. Зола из нижней части камеры сгорания удаляется с помощью скребков с гидроприводом и трёх последовательных шнеков.
Котел оборудован системой аварийной остановки при потере воды в трубопроводе на выходе из котла, системой спринклеров, заливающей водой участки системы сушки при аварийном повышении температуры на этих участках, а также системами автоматического контроля и управления технологическим процессом.
Температура воды на выходе котла измеряется с помощью первичных преобразователей TE. С выхода преобразователей сигналы подаются на вход регулятора TC. При отклонении указанного параметра, с выхода TC поступают сигналы на приводы шиберов вентиляторов.
Автоматическое управление и контроль технологическим процессом осуществляется микропроцессорной системой распределённого управления котельной, которая реализована на модулях серии ADAM-4000. Эти модули предназначены для построения распределенных систем сбора данных и управления, представляют собой компактные и интеллектуальные устройства обработки сигналов датчиков, специально разработанные для применения в промышленности. Наличие встроенных микропроцессоров позволяет им осуществлять нормализацию сигналов, операции аналогового и дискретного ввода/вывода, отображение данных и их передачу (или прием) по интерфейсу RS-485. Все модули имеют гальваническую развязку по цепям питания и интерфейса RS-485, программную установку параметров, командный протокол ASCII и сторожевой таймер.
Информация, собираемая об объекте управления, используется, как для решения задач организации управления, так и для её представления оператору на рабочей станции.
Данный проект являлся первым и показал возможности использования в Мурманской области альтернативных и экологически безопасных источников энергии.
Ввод в эксплуатацию данного проекта позволил:
- Снизить расход мазута на 2000 тонн.
- Снизить выбросы загрязняющих веществ в атмосферу:
- диоксида серы - на 180 т/год,
- золы мазутной - на 1 т/год,
- двуокиси азота - на 4 т/год,
- бенз(а)пирена - на 0,00082 т/год.
Использование биологического топлива, вместо нефтяного, оказывает позитивное влияние на окружающую среду в следующих аспектах:
- решение проблем охраны окружающей среды, связанных с хранением древесных отходов;
- улучшение качества воздуха за счет снижения использования жидкого топлива;
- исключение выбросов парниковых газов СО2, вследствие сжигания жидкого топлива, и СН4 в результате распада органических веществ в хранилищах;
- уменьшение закисления почвы и воды.
Общая стоимость проекта составила 11,4 млн. руб., из них стоимость оборудования - 4,2 млн. руб.; срок окупаемости проекта 4 - 4,5 года.
Опыт эксплуатации котельной показал, что для энергообеспечения многопрофильных сельскохозяйственных производств и предприятий агропромышленного комплекса целесообразна установка котельных, работающих на биологическом топливе.
Библиографическая ссылка
Прохоренков А.М., Глухих В.Г., Сабуров Е.И., Сабуров И.В. ТЕХНИКО-ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ ПЕРЕВОДА РАБОТЫ СЕЛЬСКИХ МНОГОПРОФИЛЬНЫХ КОТЕЛЬНЫХ НА БИОТОПЛИВО // Успехи современного естествознания. – 2006. – № 4. – С. 78-80;URL: https://natural-sciences.ru/ru/article/view?id=10246 (дата обращения: 10.09.2024).