Научный журнал
Успехи современного естествознания
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,736

ИСПОЛЬЗОВАНИЕ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ В МАССОВЫХ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЯХ

Воронкин Е.В. Бикташев Р.А.

Универсальные процессоры (CPU) созданы для исполнения одного потока последовательных инструкций с максимальной производительностью, а графические процессоры (GPU) проектируются для быстрого исполнения большого числа параллельно выполняемых потоков инструкций.

Для увеличения производительности CPU стараются добиться выполнения как можно большего числа инструкций параллельно. Начиная с процессоров Intel Pentium, появилось суперскалярное выполнение, обеспечивающее выполнение двух инструкций за такт. Но у параллельного выполнения последовательного потока инструкций есть определённые базовые ограничения и увеличением количества исполнительных блоков кратного увеличения скорости не добиться.

Алгоритмы, реализуемые видеочипами, обладают естественным параллелизмом. Видеочип принимает на входе группу полигонов, проводит все необходимые операции, и на выходе выдаёт пиксели. Обработка полигонов и пикселей независима, их можно обрабатывать параллельно, отдельно друг от друга. Высокая степень параллелизма в GPU вызывает необходимость использования большого количества исполнительных блоков, которые легко загрузить, в отличие от последовательного потока инструкций для CPU. Кроме того, современные GPU также могут исполнять больше одной инструкции за такт.

В универсальных процессорах большая часть транзисторов и площади чипа идут на буферы команд, аппаратное предсказание ветвления и огромные объёмы внутри чиповой кэш-памяти. Все эти аппаратные блоки нужны для ускорения исполнения немногочисленных потоков команд. Видеочипы тратят транзисторы на массивы исполнительных блоков, разделяемую память небольшого объёма и контроллеры памяти на несколько каналов. Вышеперечисленное не ускоряет выполнение отдельных потоков, оно позволяет чипу обрабатывать нескольких тысяч потоков, одновременно исполняющихся чипом и требующих высокой пропускной способности памяти.

CPU снижают задержки доступа к памяти при помощи кэш-памяти большого размера. Видеочипы обходят проблему задержек доступа к памяти за счет готовности исполнения тысяч потоков. В то время, когда один из потоков ожидает данных из памяти, видеочип может выполнять вычисления другого потока без ожидания и задержек. Можно сказать, что в отличие от современных универсальных CPU, видеочипы предназначены для параллельных вычислений с большим количеством арифметических операций. И значительно большее число транзисторов GPU работает по прямому назначению ‒ обработке массивов данных, а не управляет исполнением немногочисленных последовательных вычислительных потоков. На рисунке показаны соотношения объема чипа занимаемого разнообразной логикой в CPU и GPU.

pic

Основой эффективного использования мощи GPU в научных и иных неграфических расчётах является распараллеливание алгоритмов на сотни исполнительных блоков, имеющихся в видеочипах. К примеру, множество приложений по молекулярному моделированию отлично приспособлено для расчётов на видеочипах, они требуют больших вычислительных мощностей и поэтому удобны для параллельных вычислений. А использование нескольких GPU даёт ещё больше вычислительных мощностей для решения подобных задач.

Выполнение расчётов на GPU показывает отличные результаты в алгоритмах, использующих параллельную обработку данных. При этом лучшие результаты достигаются, если отношение числа арифметических инструкций к числу обращений к памяти достаточно велико.

Области применения параллельных расчётов на GPU. Это анализ и обработка изображений и сигналов, моделирование физических процессов, выполнение финансовых расчётов, ведение баз данных, моделирование динамики газов и жидкостей, криптография, астрономия, биоинформатика, цифровое кино и телевидение, геоинформационные системы, магнитно-резонансная томография, нейросети, искусственный интеллект, анализ спутниковых данных, сейсмическая разведка.


Библиографическая ссылка

Воронкин Е.В., Бикташев Р.А. ИСПОЛЬЗОВАНИЕ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ В МАССОВЫХ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЯХ // Успехи современного естествознания. – 2011. – № 7. – С. 88-89;
URL: http://natural-sciences.ru/ru/article/view?id=27060 (дата обращения: 12.11.2019).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074