Научный журнал
Успехи современного естествознания
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,823

МЕТОД ГРАНИЧНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ В ОЦЕНКЕ СОБСТВЕННЫХ ЧАСТОТ ОБЛАСТИ СО СКОСАМИ СТЕН

Абрамов В.В.

Рассмотрим задачу о расчете собственных частот колебания прямоугольной области со скосами стен. Данная проблема актуальна в акустике помещений при улучшении качества звучания. Для решения задачи используем метод граничных интегральных уравнений (ГИУ).

Остановимся на геометрии этой области. Пусть две смежные стороны без скоса имеют размеры a и b. А две другие зададим, как уравнение прямой через угловой коэффициент и точку:

f (1)

f (2)

где k* = ctgα, k2 = tgβ. Углы a и b отсчитываются от соответствующих сторон прямоугольника с размерами a на b, как показана на рисунке.

pic

Геометрия задаваемой области

Заметим, что такая параметризация скошенных сторон четырехугольника позволит избежать неприятностей при переходе к прямоугольнику.

Будем рассматривать только выпуклые четырехугольники. Для этого наложим ограничения на углы скоса сторон. Такими условиями очевидно являются:

f (3)

f (4)

f (5)

f (6)

Отметим, условия (5) и (6) есть ни что иное, как условия нахождения точки пересечения двух скошенных сторон в правом верхнем квадранте.

Вернемся к решению самой задачи. Мы рассматриваем поле давлений внутри четырехугольной области с двумя смежными скошенными сторонами. Известно, что в данной области поле давлений удовлетворяет уравнению Гельмгольца:

f (7)

где f - волновое число, ω - круговая частота, c - скорость звука в данной среде.

Рассмотрим граничные условия. Оно имеет вид:

f (8)

где l - контур (в нашем случаи четырехугольник). Заметим, что полное давление представимо в виде:

f (9)

где pinc - поле давлений порожденное точечным источником звука; psc - отраженное поле давлений.

Рассмотрим задачу об нахождении отраженного поля на контуре l. Для этого, перепишем условия (7) и (8) с учетом (9). Тогда получим:

f (10)

Решать систему (10) будем с помощью метода граничных интегральных уравнений (МГИУ). Зафиксируем точку x = (x1, x2) внутри контура l, а точка y = (y1, y2) - переменная. Введем расстояние между точками x и y, как f.

Заметим, функция Грина для данной задачи имеет вид:

f (11)

где f - функция Ханкеля, а J0(kr), Y0(kr) - функции Бесселя первого и второго рода соответственно, причем она сама по определению удовлетворяет уравнению Гельмгольца:

f. (12)

Возьмем первое уравнение (10) и умножим его на функцию Грина, затем уравнение (12) умножим на отраженное поле давлений, вычитаем одно из другого и интегрируем по области заключенной в нашем четырехугольнике. Далее воспользовавшись формулой Грина получим:

f (13)

Устремив f и воспользовавшись свойствами потенциала двойного слоя, получим:

f (14)

В формуле (14) было использовано второе уравнение из (10).

Стоит отметить, что pinc удовлетворяет уравнению Гельмгольца (7), а следовательно имеет вид:

f (15)

Заметим, что интегральное уравнение (14) является уравнением Фредгольма второго рода, правая часть которого нам известна, так как функция Грина известна из (11), а из (15) следует что:

f (16)

где 

f (17)

и f - внешняя нормаль.

Разберемся с вопросом о выборе внешней нормали на каждой из сторон. Очевидно, что для стороны длинной a внешняя нормаль - f, для стороны длинной b внешняя нормаль - f, для стороны y1 внешняя нормаль - f; для стороны y2 внешняя нормаль - f.

Решим интегральное уравнение (14) методом коллокаций. Организуем две последовательности: f - внешние узлы и f - внутренние узлы, где i = 1, ..., N и j = 1, ..., N. Заметим, что методом коллокаций называется такой численный метод дискретизации интегрального (14) при котором множество внутренних узлов совпадает с множеством внешних узлов, то есть f. Из вида уравнения (14) отраженное поле следует искать в виде:

f (18)

Тогда дискретизируя уравнение (14) и разделяя вещественные и мнимые части в нем получим:

f (19)

f (20)

где ff и Dl - величина шага.

Введем обозначения:

f

f

f

Таким образом, мы получили систему вида Ap = f, где A ∈ M2N×2N; p, f ∈ R2N и имеют вид:

f  f  f

Заметим, что диагональные элементы матрицы A ∈ M2N×2N должны иметь вид f, но так как f, то ими можно пренебречь.

Так как на диагонали матрицы A ∈ M2N×2N стоят элементы большие, чем остальные элементы матрицы, то эта матрица хорошо обусловлена. Для решения данной системы линейных алгебраических уравнений можно пользоваться QL - алгоритмами.

Предложенный в данной работе метод был апробирован на конкретных тестовых геометриях, для которых удается эффективно построить распределение первой сотни собственных частот колебания в реальном масштабе времени.

Список литературы

  1. Исакович М.А. Общая акустика. - М.: Наука, 1973.
  2. Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов. - М.: Мир, 1987.
  3. Бенерджи П., Баттерфилд Р. Методы граничных элементов в прикладных науках. - М.: Мир, 1984.

Библиографическая ссылка

Абрамов В.В. МЕТОД ГРАНИЧНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ В ОЦЕНКЕ СОБСТВЕННЫХ ЧАСТОТ ОБЛАСТИ СО СКОСАМИ СТЕН // Успехи современного естествознания. – 2011. – № 7. – С. 243-244;
URL: http://natural-sciences.ru/ru/article/view?id=27329 (дата обращения: 26.11.2020).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074