Ранее были получены результаты [1], свидетельствующие о несомненном протекторном действии бионического режима импульсно - гипоксических адаптаций в горах Приэльбрусья на рецидивы злокачественных опухолей головного мозга у группы людей перенесших нейрохирургическую операцию по удалению глиом и астроцитом. В этой работе было показано, что под влиянием сеансов импульсной гипоксии в скопированном у нервных клеток режиме самоадаптации, воспроизведенном техническими средствами в условиях Приэльбрусья, и поэтому названном нами бионическим, послеоперационная смертность снизилась с 60 в контроле до 14 %, а в случае рецидивов - с 20 до 3 %.
В основе протекторного действия бионического режима импульсной гипоксии (БРИГ) лежит процесс ускоренного формирования (5-7 суток) под его влиянием состояния адаптации в структурах нервной ткани, главнейшим признаком которой является синхронизация ритмов флуктуаций напряжения кислорода (Ро2) и электрических разрядов нервных клеток [2], которая осуществляется в достаточно полном соответствии с основными положениями синергетики - части современной неравновесной термодинамики [2, 3]. Это обстоятельство побудило нас к рассмотрению механизмов протекции головного мозга от злокачественных опухолей импульсно-гипоксическими адаптациями с позиций термодинамики с надеждой на более глубокое понимание сути явления протекции [1] и определение стратегии поиска эффективного и неинвазивного способа защиты организма от злокачественных опухолей.
Проблемами онкологии, в том числе и нейроонкологии, занимались и до нас, но относительно скромные результаты, не эквивалентные затраченным усилиям, позволяют усомниться в правильности выбранных направлений. Их можно свести в основном к поиску первопричин (их оказалось много), синтезу специфического лекарства (не нашли), а также и специфической мишени воздействия - в одной клетке более 40 млрд. элементов [4] и каждый из них может быть мишенью. К сожалению, не оправдала себя и основная стратегия лечения, направленная на геном клетки [5]. В этой связи авторы [5] предлагают обратить внимание исследователей на метаболический статус клетки и поиск эффективного способа восстановления работоспособности всей дыхательной цепи в раковых клетках. Это предложение имеет научное обоснование с позиций биоэнергетической теории возникновения опухолей О. Варбурга [6], согласно которой в основе злокачественного роста лежит нарушение кислородного (аэробного) метаболизма в клетках - переключение энергопродукции на анаэробный гликолиз с последующей адаптацией клеток к анаэробным (гипоксическим) условиям. Экспериментальное подтверждение теории О. Варбурга есть в наших работах [1, 2, 3] - БРИГ нормализует оксигенотопографию нервной ткани и синхронизирует многочисленные функции кислорода в клетках и тканях [2, 7].
Цель исследования. Продолжающийся поиск «лекарства» от рака [5], биоэнергетическая теория возникновения опухолей О. Варбурга [6] и результаты собственных экспериментальных исследований [1, 2, 3] побудили нас сделать целью настоящей работы термодинамический анализ изменений температуры в исследуемых структурах коры головного мозга в условиях нормы и при адаптации к импульсной гипоксии в бионическом режиме ее генеза.
Материалы и методы исследования
Опыты ставились на белых половозрелых крысах линии «Вистар» (n = 60). Температура измерялась с помощью микротермопары ПМТ-2 и регистрирующего прибора КСП-4. Микротермопару использовали в опытах с соблюдением необходимых требований к подобного рода экспериментам (калибровка, «состаривание» в физрастворе, адаптация к условиям ткани и т.д.). Микротермопара погружалась в ткань сенсомоторной зоны коры головного мозга на глубину 950-1000 мкм и подводилась к нервным клеткам с помощью стереотаксической техники, о чем судили по характеру импульсной электрической активности (ИЭА). Адаптацию животных к условиям гипоксии осуществляли по методике БРИГ [1], результаты измерений с КСП-4 переводились в градусы по Цельсию с помощью калибровочного графика и обрабатывались статистически в программе Excel с использованием t-критерия Стьюдента.
Результаты исследования и их обсуждение
Известно, что температура - одно из самых глубоких понятий термодинамики, служит мерой только неупорядоченного движения частиц и является, таким образом, именно термодинамическим свойством системы многих частиц [8].
С учетом этого положения и в соответствии с термодинамикой неравновесных систем, рассмотрим результаты (таблица) экспериментального определения изменений температуры в исследуемой нервной ткани в условиях «нормоксии» (0,55 км - уровень г. Нальчика), острой гипоксии (3,05 км) и адаптации к импульсной гипоксии способом БРИГ.
Изменение температуры коры головного мозга экспериментальных животных, °С
Высота, км |
Контрольная группа Ма ± m |
Адаптированная группа Ма ± m |
P Мк/Ма |
0,55 |
34,1 ± 0,11 |
28,6 ± 0,43 |
< 0,01 |
1,50 |
34,0 ± 0,10 |
28,4 ± 0,40 |
< 0,01 |
3,05 |
33,9 ± 0,09 |
26,8 ± 0,69 |
< 0,01 |
0,55 |
33,7 ± 0,09 |
28,3 ± 0,68 |
< 0,05 |
Как следует из таблицы, среднее значение температуры в исследуемой нервной ткани у контрольных животных в условиях нормоксии равнялось 34,1 ± 0,11 °С, что является несколько парадоксальным фактом, т.к. обычно принято считать, что органы человека и многих теплокровных животных должны иметь более высокую температуру (36,7 °С). Однако наши эксперименты показали, что в глубоких слоях коры головного мозга контрольных животных температура не превышает 34,6 °С, т.е. ниже температуры тела. С другой стороны, следует отметить, что в исследуемой ткани коры головного мозга наблюдался существенный разброс абсолютных величин температуры в пределах от 33,0 (min) до 35,6 °С (max).
Разовые подъемы контрольных животных на высоту 3,05 км приводили к снижению температуры ткани мозга контрольных животных в среднем до 33,9 ± 0,09 °С, т.е. ткань мозга неадаптированных животных включает реакцию на сброс температуры, которая продолжается и при возвращении животных к условиям нормы (см. таблицу). В целом, в исследуемой ткани коры головного мозга контрольных животных происходило снижение температуры на 0,4 °С (34,1-33,7 °С) в результате разового действия острой гипоксии.
У адаптированных к условиям импульсной гипоксии (БРИГ) животных температура исследованной зоны коры головного мозга снижалась в среднем до 28,6 ± 0,43 °С, т.е. на 5,5 °С. При подъеме адаптированных животных на высоту 3,05 км продолжалось дальнейшее снижение температуры в среднем до 26,8 ± 0,69, т.е. на 1,8 °С. У контрольных животных это снижение составляло всего 0,2 °С (34,1-33,9). Следовательно, реакция сброса температуры у адаптированных к условиям импульсной гипоксии животных была в 9 раз выше, чем у контрольных животных (1,8:0,2). Возможно, что полученные нами результаты исследования локальной структуры коры головного мозга, распространяются и на весь мозг, т.к. температура в отличие от энергии не зависит от размеров системы [8].
Следовательно, обнаруженные в настоящей работе изменения температуры и вытекающие из них выводы могут иметь большое значение для феноменологического анализа ранее установленного факта протекции мозга от злокачественных опухолей [1], а также для решения вопроса о выборе стратегии поиска эффективного способа защиты организма от злокачественного роста, основанного на принципах адаптационной физиологии живой природы.
Снижение температуры в ткани мозга на 5,5 °С приобретает большое значение для термодинамического анализа. Так, энергетическая потребность мозга большинства теплокровных животных и человека примерно равна 360 ккал/сутки. С учетом этих данных, как показывает простой расчет, при снижении температуры в нервной ткани с 34,1 до 28,6 °С, т.е. на 5,5 °С, мозг будет экономить 58,1 ккал/сутки. Если принять энергию макроэргической связи в АТФ равной 7 ккал, то клетки головного мозга в результате адаптации к импульсной гипоксии в сутки будут экономить 8,3 молекул АТФ. Таким образом, происходит значительное снижение энергопотребления нейронов мозга адаптированных импульсной гипоксией животных - например, за 10 суток 581 ккал (58,1 ккал∙10 сут) или 83 молекулы АТФ (581:7).
Формирование адаптационных процессов в организме основано на термодинамической синхронизации ритмов энергопродукции и энергопотребления в нервной ткани и сопряженной информационной коррекцией десинхронозов между различными по скорости и энергоемкости процессами гликолиза, дыхания и одноэлектронного восстановления кислорода [9].
Если регуляторные термодинамические и информационные механизмы, синхронизирующие эти процессы по какой-либо причине нарушаются, то десинхронозы интенсифицируются и отдельные клетки свои энергетические потребности удовлетворяют только за счет запасного пути энергопродукции - гликолиза. Эти клетки начинают быстро и неуправляемо расти. Также быстро они поглощают питательные вещества (сахара) и соседние нормальные клетки начинают голодать. Этот процесс есть не что иное, как образование злокачественной опухоли, что с точки зрения термодинамики неравновесных систем равнозначно возрастанию скорости производства энтропии в нервной ткани. Эту ситуацию, как показывает история борьбы с онкологическими заболеваниями, не удается исправить таблетками, излучениями или хирургическими вмешательствами. Возможны только локальные победы, одерживаемые благодаря подвигу отдельных врачей.
Выход из этой ситуации есть - это природная (высокогорная) импульсно-гипоксическая терапия онкологических заболеваний. Так, вызываемые условиями высокогорных импульсно-гипоксических сеансов снижения температуры и энергопотребления сокращают основную «статью» расхода энергии в нервных клетках - импульсная электрическая активность нейронов уменьшается примерно на 40 % [10]. В результате этого необходимость в притоке глюкозы у них также значительно снижается, т.е происходит адаптация нейронов к дефициту основного продукта питания. Однако, что очевидно, злокачественные образования уже не могут активно использовать сахар, т.к. сеансы импульсной гипоксии, как показали десятки серий опытов [9], повышают парциальное давление (Ро2) вокруг нервных клеток на 35-45 % и «упакованность» нервной ткани молекулами кислорода, что лишает опухолевые клетки их энергетической базы - гликолиза в полном соответствии с эффектом Пастера [5].
Заслуживает большого внимания и другой факт, установленный в настоящем исследовании - реакция сброса температуры в нервной ткани адаптированных БРИГ животных, как отмечено выше, в условиях острой гипоксии возрастает в 9 раз. Следовательно, при необходимости это обстоятельство может быть использовано для еще большего разрушения гликолиза и нормализации ритмов энергопотребления и энергопродукции, что будет равнозначно процессу нормализации скорости производства энтропии в нервной ткан, т.к. он (процесс) зависит от температуры.
Итак, одним из механизмов протекции головного мозга от опухолевого роста может быть термодинамическая нормализация ритмов энергопродукции и энергопотребления в структурах нервной ткани под влиянием сеансов импульсной гипоксии в предложенном нами природном режиме [1]. В этой связи считаем необходимым мобилизовать и направить усилия ученых в области адаптационной физиологии на разработку еще более эффективных импульсно - гипоксических способов адаптации в условиях природы (высокогорья) или барофизиологической техники. В этом плане большую надежду мы возлагаем на изучение фундаментальных нейросинергетических механизмов адаптации и разработку на их основе технических средств для дистанционного управления функциями и адаптациями организма человека [2, 3].
Успехи в этом направлении освободили бы человека (больных) от привязанности к условиям высокогорья и барофизиологической техники, что имело бы большое значение для здравоохранения.
Список литературы
- Шаов М.Т., Пшикова О.В., Каскулов Х.М. Механизмы защиты мозга от злокачественных опухолей импульсно -гипоксической адаптацией // J.Hypoxia Medical. - 2002. - № 3-4. - С. 52-55.
- Шаов М.Т. Нейросинергетические механизмы адаптации к гипоксии и проблема дистанционного управления физиологическими функциями организма // Физиологические проблемы адаптации: мат. конф. - Ставрополь: СГУ, 2003. - С. 58-60.
- Шаов М.Т., Пшикова О.В. К проблеме дистанционного управления функциями и адаптациями организма на основе естественных биотехнологий // Биоресурсы. Биотехнологии. Инновации Юга России: мат. межд. научно-практич. конф. - Ставрополь - Пятигорск: СГУ, 2003. - Ч. 2. - С. 248-252.
- Певзнер Л.Основы биоэнергетики. - М.: Мир, 1977. - 310 с.
- Медведев Д.В., Толстой А.Д. Гипоксия и свободные радикалы в развитии патологических состояний организма. - М.: Терра - Колендр и Промоушн, 2000. - 232 с.
- Warburg O. On original of cell. - Science, 1956. - S. 309-314.
- Шаов М.Т. Кислородзависимые процессы и полифункциональность кислорода // Актуальные проблемы гипоксии: сб. науч. трудов. - М. - Нальчик, 1995. - С. 5-11.
- Эткинс П. Порядок и беспорядок в природе. - М.: Мир, 1987. - 224с.
- Шаов М.Т., Курданов Х.А., Пшикова О.В. Кислородзависимые, электрофизиологические и энерго-информационные механизмы адаптации нервных клеток к гипоксии. - Воронеж: Научная книга, 2010. - 196 с.
- Шаов М.Т., Пшикова О.В. Биофизические механизмы повышения устойчивости нервных клеток к гипоксии // Проблемы теоретической биофизики: междунар. школа. - М., 1998. - С. 189.
Библиографическая ссылка
Шаов М.Т., Пшикова О.В., Абазова И.С. ТЕРМОДИНАМИЧЕСКИЕ МЕХАНИЗМЫ ПРОТЕКЦИИ МОЗГА ОТ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ ИМПУЛЬСНО-ГИПОКСИЧЕСКИМИ АДАПТАЦИЯМИ // Успехи современного естествознания. – 2012. – № 1. – С. 41-44;URL: https://natural-sciences.ru/ru/article/view?id=29558 (дата обращения: 21.11.2024).