Подавляющее большинство существующих жидкостей имеют кривую течения η(γ), отличную от линейной ньютоновской. Это отличие для реостабильных текучих систем проявляется в том, что прямая не проходит через начало координат, а течение начинается при достижении касательного напряжения τ0. Такие жидкости называются вязкопластическими. Рассматривается процесс течения высоконаполненной вязкопластической суспензии, подчиняющейся реологическому закону Шведова-Бингама (τ = τ0 + η(∂υx/∂y)), в вертикальном валковом зазоре двухвалкового аппарата. Вязкость среды относительно невелика, поэтому силы вязкого трения соизмеримы с силами собственного веса жидкости. Основным технологическим параметром процесса вальцевания является толщина материала [1, 2].
Схема течения и система координат представлены на рисунке. Начало декартовой системы координат помещено в середине сечения минимального зазора. Ось у направлена горизонтально, ось x - вертикально вниз. Уровень жидкости x = x0 постоянен. Объемный расход жидкости G. Окружная скорость валков V, их радиус R. Минимальный зазор между валками 2H0, а текущий 2h. Текущая толщина квазитвердого ядра 2h0. Уровень жидкости ℓ.
С целью упрощения расчета перейдем к безразмерным переменным:
(1)
где g - ускорение свободного падения; ρ - плотность жидкости; P - давление; q - безразмерный расход; ξ - безразмерная переменная Гаскелла; ξ0, λ - безразмерные координаты входа и выхода из зазора; 2ζ(ξ) - безразмерная текущая толщина квазитвердого ядра;
η - пластическая вязкость; St - число Стокса; La - число Лагранжа; S - число Ильюшина.
Толщина слоя материала на валках δмат находится итерационным методом: задаваясь толщиной слоя материала (см. рисунок) находим безразмерную координату точки выхода:
(2)
затем координата входного сечения ξ0 определяется с учетом условия ξ = ξ0, La = 0 из уравнения:
(3)
Схема течения вязкопластической среды в вертикальном межвалковом зазоре: 1 - валки, 2 - жидкость, 3,4 - первая (противотока) и вторая (прямотока) зоны градиентного течения, 5 - квазитвердое ядро
Полученная координата входного сечения ξ0 выражается из уравнения:
(4)
и позволяет вычислить необходимый расход влажного материала и высоту уровня суспензии над осью абсцисс. С помощью уравнений (1) несложно перейти к размерной форме переменных. При несовпадении расчетного значения расхода G с заданным, изменяем λ и повторяем расчет.
Вычисление энергосиловых характеристик движения жидкости (силы трения F; распорного усилия W; мощности привода M ) совпадает с классической методикой расчета:
(5)
(6)
(7)
Список литературы
-
Шаповалов В.М., Зубович С.О. Влияние гравитационных сил на течение среды Шведова-Бингама в валковой сушилке // Химия и химическая технология. Известия высших учебных заведений. - 2006. - Т. 49, №6. - С. 59-61.
- Зубович С.О., Шаповалов В.М. Математическая модель течения тяжёлых вязкопластических сред в зазоре вращающихся валков (постановка задачи) // Известия Волгоградского государственного технического университета: межвузовский сборник научных статей. - Волгоград, 2007. - №11(37). - С. 37-40.
Библиографическая ссылка
Ходякова Е.С., Зубович С.О. МЕТОДИКА РАСЧЕТА ВАЛЬЦЕВАНИЯ ВЯЗКОПЛАСТИЧЕСКОЙ ТЯЖЕЛОЙ СРЕДЫ ШВЕДОВА-БИНГАМА // Успехи современного естествознания. – 2012. – № 4. – С. 40-41;URL: https://natural-sciences.ru/ru/article/view?id=29855 (дата обращения: 14.12.2024).