Достижения протеомики существенно расширили наши представления об индивидуальных белках, строении и функциях макромолекулярных белковых комплексах в эритроцитах. На мембране эритроцитов обнаружены макромолекулярные ассоциаты, которые названы комплекс белка 4.1.R и комплекс белка 3 полосы. Предложена модель организации макромолекулярного комплекса цитоскелетных и трансмембранных белков с участием белка 4.1 R. По горизонтали белок 4.1 R. взаимодействует с актином, спектрином и белком p55, причем последний определяет узловые соединения между мембраной и компонентами цитоскелета. По вертикали белок 4.1 R взаимодействует с цитоплазматическим доменом трансмембранного белка гликофорина С, белком 3 полосы и CD44, что создает своего рода мостик между сетью белков и мембранным бислоем [28]. Основная функция комплекса белка 4.1 R – определение механических свойств и деформируемость мембран эритроцитов. Высказано предположение, что нарушения этого комплекса детерминируют не только нестабильность эритроцитарных мембран, но и ремоделирование поверхности красных клеток. [13; 30; 33]. Проводятся исследования по выявлению факторов, регулирующих множественные белок – белковые взаимодействия в комплексе белка 4.1 R. Одним из таких факторов является фосфорилирование белка 4.1 R с участием протеинкиназы С. В результате снижается способность белка 4.1 R образовывать комплекс со спектрином и актином, диссоциация от гликофорина С, что приводит к изменению механических свойств мембран эритроцитов [22;27]. Высказано мнение, что эластичность мембраны эритроцитов в большей степени зависит от динамической перестройки комплекса димеры спектрина/тетрамеры спектрина по влиянием сдвига напряжения в кровотоке [3].
Белок 3 полосы формирует основу (кор) для макромолекулярного комплекса интегральных и периферических белков мембраны эритроцитов. Первоначально было предположено, что этот комплекс функционирует как интегрированная структурная единица (метаболон) для обмена CO2/O2 в эритроцитах [6]. Более поздними исследованиями показано, что тетрамер белка 3 полосы связан с анкирином, который, в свою очередь, взаимодействует со спектрином. Трансмембранные гликопротеины GPA, Rh, RhAG связываются с белком 3 полосы, тогда как CD47 and LW взаимодействуют с Rh/RhAG. Два цитоплазматических домена белка 3 полосы имеют сайты связывания растворимых белков. Причем большой N –концевой терминальный домен имеет сайты связывания как для дезоксигемоглобина, так и для ряда ферментов гликолиза (глицеральдегид-3-фосфатдегидрогеназа и альдолаза). Предположительно, взаимодействие ферментов гликолиза с доменом белка 3 полосы проходит при участии стыковочных белков. С-терминальный участок связывает карбоангидразу II. Связывание карбоангидразы II приводит к двум событиям: поглощению углекислого газа и высвобождение кислорода из гемоглобина. В условиях высокой оксигенации связывание гликолитических ферментов с белком 3 полосы ингибирует гликолиз при усилении пентозофосфатного пути. В условиях низкой оксигенации взаимодействие дезоксигемоглобина с белком 3 полосы приводит к усилению гликолиза и снижению пентозофосфатного пути. Расширены представления о роли 2, 3 –дифосфоглицерата. Этот метаболит взаимодействует с комплексом спектри-актин-белок 4.1, способствует взаимодействию с комплексом спектрин-антин-белок 4.1 [2; 5; 9,14;29].
Получены новые данные о мембранных белках – транспортерах. Наряду с известными транспортерами, такими как Nа+, К+-АТФ-аза и Са2+-АТФ-аза, показано присутствие Na+/K+/2Cl− кo-транспортера и транспортера глюкозы. Относительно последнего мнения расходятся. По одним представлениям, транспортер глюкозы представлен GLUT1 1 [8], по другим – GLUT1, GLUT3, GLUT4 [7]. Есть сведения об участии в переносе глюкозы гликофорина А [1]. Также было предположено наличие других транспортеров, в частности, водород-лактат котранспортера. Приведены данные, подтверждающие наличие белка – транспортера XK, участвующего в переносе аминокислот и олигопептидов [7].
В мембранах эритроцитов обнаружено присутствие аквапорина 1. Blank ME и Ehmke H. показали, что не только HCO3(-)-Cl– транспортер, но и аквапорин 1 эритроцитов непосредственное принимает участие в транспорте двуокиси углерода через мембрану эритроцита [4]. Endeward V. привели данные, демонстрирующие, что через аквопорин 1 переносится до 60 % углекислого газа, что позволяет рассматривать аквопорин как основной путь поступления CO2 в эритроцит [12.]
Для эритроцитов обнаружен феномен выхода ионов калия (Ca(2+)-dependent K(+) efflux). Ответственным за этот эффект (Gárdos effect) является специфический канальный мембранный белок (Gárdos channel), активатором которого являются ионы кальция [17]. Одной из функций Ca(2+)-dependent K(+) каналов является их участие в регуляции апоптоза эритроцитов [15;21]. Начато изучение функции неселективных катионных каналов в регуляции объема клетки. По представлениям Lang F и соавт. [16]. в эритроцитах человека неселективные катионные каналы открываются при осмотическом сморщивании клеток. Также среди стимуляторов активации каналов называют окислительный стресс и гипоэнергетическое состояние. Катионные каналы проницаемы для кальция и их открытие приводит к увеличению уровня кальция в цитозоле. Ионы кальция, поступающие через катионный канал, стимулируют активацию скрамблазы, что ведет к разрушению асимметрии фосфатидилсерина в мембранах эритроцитов и стимулирует Ca(2+)-зависимый выход K(+), что приводит к потере ионов калия и сморщиванию клеток. Нарушение асимметрии фосфатидилсерина подтверждается связыванием аннексина, что является признаком апоптозных клеток. Экспозиция фосфатидилсерина на внешней стороне мембраны эритроцитов стимулирует фагоциты к поглощению апоптозных эритроцитов [16].
Rinehart J и соавт. высказали мнение, что KCl котранспорт и активация Gardos каналов играет большую роль в регуляции водно-солевого баланса в эритроцитах [31].
В цитозоле эритроцитов содержится большое количество белков. По данным [11], с помощью протеомных технологий идентифицирован 751 белок. Это позволило определить степень взаимодействия и взаимного влияния этих белков (интерактом). Обращает внимание наличие определенных кластеров, один из которых авторы [11] назвали ROD Box (Repair Or Destroy). Этот бокс содержит белки, которые, используя энергию АТФ, участвуют в рефолдинге поврежденных белков. В состав этого бокса входят шапероны и белки протеасомных субъединицы, белки теплового шока [11, 14]. Исследованием [26] показано наличие действующих 20S протеосом (независимых от АТФ и убиквитина) в зрелых эритроцитах. Авторы ставят закономерный вопрос о причинах сохранения этих протеосом в зрелых эритроцитах. Высказано предположение, что 20S протеасомы более устойчивы к окислительному стрессу [10]. Другим вопросом является существование убиквитинзависимой претолитической деградации белков в эритроцитах.
Присутствие в мембранах полиненасыщенных жирных кислот, среда, богатая кислородом и содержащая железо, делает эритроциты подверженными окислительному стрессу. Источником АФК в эритроцитах является аутоокисление гемоглобина, в результате образуется супероксиданионы (O2•−). При этом гемоглобин превращается метгемоглобин. Кроме супероксиданионов образуется пероксид водорода и другие активные формы кислорода (реакции Габера-Вейса и Фентона). Активные формы кислорода индуцируют активацию перекисного окисления липидов, окислительное повреждение белков эритроцитов, т.е. способствуют развитию окислительного стресса.
Образование МДА способствует формированию перекрестных сшивок между фосфолипидами и белками мембраны. Результатом является нарушение функции мембраны, деформабильности клетки и ограничение жизни эритроцита. Наиболее чувствительны к образованию МДА белки – транспортеры ионов и белок 3 полосы, а также глицероальдегид-3 – фосфатдегидрогеназа и фосфофруктокиназа. Предполагается, что критичным звеном для выживания эритроцита является окислительное повреждение Са2 + АТФ-зы [1; 7]. Увеличение образования пероксида водорода способствует увеличению метгемоглобина, ПОЛ и комплексов спектрин – гемоглобин. При взаимодействии супроксиданионов с оксидом азота образуется пероксинитрит. Пероксинитрит вызывает множественные внутриэритроцитарные изменения, включая повреждение цитоскелета, мембранных белков, индуцирует образование метгемоглобина и способствует активации различных протеаз [24]. Кроме того, под действием пероксинитрита происходит экспонирование фосфатидилсерина на наружном слое мембраны эритроцита [24]. Пероксинитрит индуцирует фосфорилирование тирозина белка 3 полосы и одновременно ингибирует активность мембраносвязанного белка, фосфотирозинфосфатазы. Результатом этих параллельных эффектов пероксинитрита является активация гликолиза [17]. Помимо пероксинитрита феномен индукции апоптоза эритроцитов был показан для гидроксильных радикалов [25].
От окислительного стресса эритроциты защищают мембраносвязанные протеиназы, ферменты АОЗ и другие белки [7]. В настоящее время большое внимание уделяется изучению белка пероксиредоксин 2 (Prx2), как одному из важнейших белков антиоксидантной защиты эритроцитов. Prx2 – это тиол-зависимая пероксидаза. В комбинации с каталазой и глутатионпероксидазой Prx2 составляют эффективную систему для утилизации пероксида водорода, образующегося в низких концентрациях при аутоокислении гемоглобина. Восстановленная форма пероксиредоксина поддерживается тиоредоксинредуктазой, но активность последней достаточно низкая. Prx2 обладает высокой чувствительностью к окислению пероксидом водорода. Предложена модель каталитического цикла Prx2, состоящая из трех стадий. Интересно отметить, что этот цикл требует 2 конформационных состояния: полный фолдинг с формированием активного центра и локальный дефолдинговая форма, которая требуется для восстановления Prx2 [18]. Помимо функции некаталитического скэвэнджера пероксида водорода пероксиредоксин регулирует транспорт ионов, связываясь с мембраной эритроцита и активируя Gárdos каналы, но механизм этого процесса пока не ясен [18, 19]. Увеличение внутриклеточного пероксида водорода приводит к увеличению доли мембраносвязанного гемоглобина и активации перекисного окисления липидов. Связывание Prx2 с мембраной также возрастало при увеличении концентрации пероксида водорода. Значение этого явления ясно не до конца. Тем не менее, по мнению авторов, хотя рост мембраносвязанного гемоглобина и мембраносвязанного Prx2 являются двумя независимыми процессами, но оба этих события являются маркерами окислительного стресса эритроцитов [23, 32].
Появились новые данные о локализации гемоглобина внутри эритроцита. Согласно Brazhe NA и соавт. существует 2 популяции гемоглобина в эритроцитах: субмембранная и цитозольная. При этом конформация молекул субмембранного гемоглобина отличается от таковой цитозольной фракции [5]. Требуется дальнейшие исследования этого феномена. Расширены представления об аллостерических регуляторах связывания кислорода с гемоглобином. По мнению Mairbäurl и Weber, регуляция обусловлена изменениями таких аллостерических эффекторов как протоны (H+), двуокись углерода (CO2), органические фосфаты и хлориды (Cl−) [20].
Большой интерес представляет обсуждение вопроса о роли гемоглобина в старении эритроцитов. Показано, что стареющие эритроциты аккумулируют окислительно -денатурированный гемоглобин, переокисленные липиды, высокомолекулярные агрегаты белки, теряют сиаловые кислоты. Эти процессы ведут к снижению фосфолипидной симметрии, образованию перекрестных связей спектрин-гемоглобин, агрегацию белка 3 полосы, увеличение гликированных конечных продуктов. Предположено, что взаимодействие гемоглобина, особенно, в условиях гипоксии с белком 3 полосы мембраны эритроцитов является критичным для изменения мембраны эритроцитов, что в свою очередь, является триггерным механизмом для удаления клеток из гемоциркуляции. Эти перестройки мембраны включают экспозицию антигенных сайтов, увеличение захода кальция в эритроциты, утечку калия из эритроцитов, что приводит к сморщиванию клеток и потерю деформабильности. Нерешенной проблемой является вероятное окислительное повреждение специфических белков мембран при окислительно-восстановительных реакциях, которые имеют место при связывании гемоглобина с мембраной [7; 32]. Дальнейшие протеомные исследования могут выявить специфические белки, участвующие в механизмах старения эритроцитов.
Имеются фактические данные о развитии апоптоза эритроцитов. В обзоре [1] приведено достаточно подробное описание сигнальных путей включения апоптоза красных клеток. Согласно [1], первый путь связан с активацией циклооксигеназы, образованием простагландина Е2 и формированием катионных каналов. Второй путь связан с каскадной активацией сфингомиелиназы. Кроме того, процесс апоптоза эритроцитов может быть индуцирован пероксинитритом [1, 24], гидроксильными радикалами [25], а также метгемоглобином [1]. Также приведены результаты исследования, демонстрирующие взаимосвязь между изменением деформационных свойств мембран эритроцитов и запуском программы апоптоза [1].
Таким образом, накоплены данные, расширяющие представления о метаболических процессах в эритроцитах. В перспективе эти результаты могут быть использованы при интерпретации и прогнозирования изменения структуры и функций эритроцитов при различных патологических состояниях.
Библиографическая ссылка
Муравлёва Л.Е., Молотов-Лучанский В.Б., Клюев Д.А., Понамарева О.А., Калина А.С., Колебаева Г.Т. БЕЛКИ ЭРИТРОЦИТОВ. МИНИОБЗОР // Успехи современного естествознания. – 2013. – № 4. – С. 28-31;URL: https://natural-sciences.ru/ru/article/view?id=31639 (дата обращения: 23.11.2024).