Научный журнал
Успехи современного естествознания
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

ЭКОЛОГО-ЭКОНОМИЧЕСКОЕ РАЙОНИРОВАНИЕ ТЕРРИТОРИИ ТЮМЕНСКОЙ ОБЛАСТИ ПО УРОВНЮ ВЫБРОСОВ ПАРНИКОВЫХ ГАЗОВ

Малышкин Н.Г. 1 Петров Г.Л. 2 Петрова Е.Ю. 2
1 ФГБОУ ВО «Государственный аграрный университет Северного Зауралья»
2 ФГБОУ ВО «Тюменский индустриальный университет»
Одним из направлений оценки уровня негативного воздействия предприятия или отрасли на компоненты окружающей природной среды является учет парниковых газов, поступающих в атмосферу от различных производственных процессов. В статье приведен анализ источников образования и выброса парниковых газов в атмосферный воздух районов и городов юга Тюменской области по пяти статистическим показателям. Выявлены отрасли осуществляющие выбросы оксида углерода, окислов азота и метана. Определена доля вкладов парниковых газов в общую эмиссию по районам и городам. Для анализа и районирования территории по уровню выброса смеси газов проведен кластерный анализ с классификацией объектов по методу ближайшего соседа. В результате объединения объектов получено два кластера по анализируемым районам и два кластера по городам и проведено их описание. По результатам расчета построена дендрограмма. Выделение объектов в отдельные кластеры обусловлено отраслевой спецификой района. Так, для первого кластера – сельское хозяйство, для второго кластера – добывающая отрасль. При пересчете показателей на единицу площади районы были разделены на три группы по уровню поступления газов. Установлено, что в структуре выбросов районов с отраслью животноводства содержание газов может достигать 70 % общего объема поступлений. На основании анализа поступлений газов от транспорта проведено ранжирование городов области. Анализ динамики парниковых газов был проведен с помощью линейного тренда по методу наименьших квадратов. Установлено среднее снижение показателя для каждого кластера.
парниковые газы
источники выброса
кластерный анализ
кластер
районирование
линейный тренд
1. Degefie D.T., Fleischer E., Klemm O., Soromotin A.V., Soromotina O.V., Tolstikov A.V., Abramov N.V. Climate extremes in south western siberia: past and future. Stochastic Environmental Research and Risk Assessment. 2014. Т. 28. № 8. Р. 2161–2173. DOI: 10.1007/s00477-014-0872-9.
2. Биненко В.И., Шевчук В.О. Региональный мониторинг концентрации парниковых газов на основе наземных и спутниковых измерений // Региональная экология. 2013. № 1–2 (34). С. 119–129.
3. Биненко В.И., Северюхина А.С. Изменчивость концентрации метана в атмосфере над Санкт-Петербургом и близлежащими регионами // Ученые записки Российского государственного гидрометеорологического университета. 2018. № 50. С. 137–151.
4. Антонов К.Л., Поддубный В.А., Маркелов Ю.И., Буевич А.Г., Медведев А.Н., Манжуров И.Л. Некоторые итоги мониторинга парниковых газов в арктических регионах России // Арктика: экология и экономика. 2018. № 1 (29). С. 56–67. DOI: 10.25283/2223-4594-2018-1-56-67.
5. Пузаченко Ю.Г. Математические методы в экологических и географических исследованиях. М.: Академия, 2004. 416 с.
6. Малышкин Н.Г. Оценка экологической безопасности районов юга Тюменской области на базе совокупности критериев // АгроЭкоИнфо. 2018. № 4 (34). [Электронный ресурс]. URL: http://agroecoinfo.narod.ru/journal/STATYI/2018/4/st_419.doc (дата обращения: 21.10.2019).
6. Малышкин Н.Г., Петров Г.Л., Петрова Е.Ю. Оценка уровня воздействия хозяйственной деятельности на атмосферный воздух методом простого ранжирования // Успехи современного естествознания. 2019. № 5. С. 70–75.

Деятельность различных отраслей экономики связана с негативным воздействием на компоненты окружающей природной среды. Направленность, степень и уровень воздействия зависят от вида и мощности производства. Эмиссия вредных веществ в атмосферу от разных источников может быть представлена общими и специфичными для отрасли компонентами, влияющими на глобальные процессы биосферы. К таким компонентам относятся парниковые газы [1, с. 2161]. Поэтому одной из важнейших задач фундаментальных исследований является изучение источников и стоков парниковых газов на основании расчетов и измерений [2, с. 119; 3, с. 138; 4, с. 59].

Функционирующая система оценки выбросов загрязняющих веществ, в том числе парниковых газов, представляет собой агрегированную оценку по видам газов и категориям источников. Для повышения эффективности их учета она должна быть дополнена учетом выбросов от комплекса источников, расположенных в регионе. Учитывая индивидуальные особенности источника и района, целесообразно применять математико-статистический аппарат [5, с. 119].

Подобный анализ должен быть основан на эмпирическом обобщении данных о влиянии тех или иных объектов, или факторов на изучаемые и анализируемые параметры. Поэтому используется вся совокупность частных и общих методов исследований, которые сопровождаются математико-картографическими моделями [6, с. 28]. Такой подход позволяет не только визуализировать данные, но и проводить их анализ. Применение кластерного анализа для решения поставленной задачи является действенным методом. Он представляет набор различных алгоритмов распределения объектов по кластерам и позволяет реализовать различные аспекты классификации районов.

Целью данного исследования является анализ степени воздействия хозяйственной деятельности и классификация районов юга Тюменской области по объемам выброса парниковых газов.

Материалы и методы исследования

Для проведения исследования были использованы статистические показатели БД официального сайта Федеральной службы государственной статистики и ежегодные обзоры по экологическому состоянию Тюменской области. С целью сопоставления показателей применяли их масштабирование. Для группировки районов был проведен кластерный анализ с классификацией объектов по методу «ближайшего соседа». Выборка сформирована по состоянию на 2018 г. Анализ динамики выброса по годам проведен за период с 2015 по 2018 г. Результаты районирования визуализировали с помощью картодиаграмм, созданных в программе QGis 3.4.

Результаты исследования и их обсуждение

Эколого-экономическое зонирование территории предполагает разделение территории по одному или нескольким эколого-экономическим признакам на зоны. При выборе метода анализа поставленной проблемы сформулирован ряд требований, которые преследуют цель качественной характеристики выделенных количественных показателей [7, с. 74]. Перед проведением «кластеризации» необходимо определить перечень статистических показателей наиболее приоритетных для анализа поставленной проблемы и провести их масштабирование с целью приведения к одним единицам измерения, одному интервалу измерения и направлению оптимизации (от 0 до 1). Для достижения этой цели был проведен пересчет показателей по следующей формуле:

malih01.wmf

Так, объектами исследования были 22 района и 5 городов юга Тюменской области. В качестве статистических показателей для выполнения анализа были выбраны:

Y – количество источников, в выбросах которых присутствуют парниковые газы;

X1 – объем выбросов парниковых газов (тыс. т/год);

X2 – степень улавливания парниковых газов ( %);

X3 – объем выбросов загрязняющих веществ от автотранспорта (тыс. т/год);

X4 – объем выброса парниковых газов по отраслям экономики (тыс. т/год).

Совокупными источниками образования оксида углерода, метана и окислов азота на юге области являются стационарные установки по сжиганию топлива, фугитивные выбросы, нефтепереработка и нефтехимия, производство стекла и керамических изделий, авиационный и железнодорожный транспорт и прочие промышленные процессы. При этом на любом предприятии присутствуют источники, эмиссии газов которых составляют менее 5 % в общем объеме. В соответствии с приказом Минприроды № 300 от 30.06.2015 они могут не учитываться в общей структуре выброса. Но в совокупности по районам их годовой объем можно сопоставить с выбросами небольшого производства.

Объемы поступлений валовых выбросов загрязняющих веществ в атмосферу варьируют как по отраслям, так и внутри одной отрасли, что обусловлено мощностью источника и наличием рассредоточенных по территории более мелких источников. Из приведенного перечня объектов в Тюменской области 61 % валовых поступлений приходится на добывающую отрасль, 18 % на обрабатывающие производства, 9 % на транспорт и 8 % на ТЭК.

По проведенному анализу статистических данных с 2015 г. наблюдается увеличение выбросов углекислого газа на 17 %, в добывающем секторе экономики, но при этом в некоторых отраслях наблюдается тенденция к снижению. Поэтому классификация районов по кластерам с выделением потенциально значимых по объемам поступления, как парниковых газов, так и иных компонентов, является актуальной.

В результате проведенного кластерного анализа для 22 районов области выполнено 19 итераций и получено 2 кластера с расстоянием Р = 1,01. Состав кластеров представлен в табл. 1.

В состав первого кластера вошел 21 район без учета городов. Преимущественно это населенные пункты, где сосредоточены отрасли сельского, лесного и рыбного хозяйства, в выбросах которых превалирует оксид углерода. Валовые выбросы этого компонента на территории районов составили 0,021–1,02 тыс. т/год, за исключением Тюменского района, где значение показателя составило 1,665 тыс. т/год. Второй кластер представлен Уватским районом. Объем выброса парниковых газов здесь обусловлен деятельностью отраслей добывающей промышленности и трубопроводного транспорта и составляет 21,087 тыс. т/год.

В процессе классификации городов проведено 4 итерации и в результате объединения получено 2 кластера с расстоянием Р = 0,93. Состав кластеров представлен в табл. 2.

В состав первого кластера входит Тюмень, что обусловлено высокими показателями выбросов парниковых газов (4,949 тыс. т) по сравнению с анализируемыми показателя других городов юга области. Количество стационарных источников выброса составляло 399 единиц. Второй кластер объединяет 4 города. Они имеют близкие по значению показатели, но внутри кластера можно выделить объект, отличающийся по значению от соседствующих с ним. Так, например, Тобольск как по объему выбросов, так и по количеству источников, осуществляющих выбросы углекислого газа, выделяется относительно остальных городов. Выбросы на этой территории поступают от 78 стационарных источников в объеме 3,233 тыс. т/год.

Результаты иерархической классификации объектов представлены на рис. 1 в виде дендрограмм.

На дендрограмме можно отметить, что Тюменский район имеет пограничное значение по анализируемым показателям с кластером 2, по параметру расстояния (Р), но относится к кластеру 1. Среди городов, показатели по Тобольску занимают соседствующее положение с первым кластером. При удалении из расчета Уватского района и проведении кластерного анализа для 21 района в отдельный кластер выделяется Тюменский район с расстоянием Р = 0,53.

Анализ структуры выбросов по районам при пересчете на единицу площади позволил провести зонирование территории по категориям. В первую зону вошли Тюменский, Уватский и Ярковский районы, где нагрузка СО2 варьировала от 0,153 до 0,451 т/км2. Вторая зона представлена Абатским, Армизонским, Аромашевским, Викуловским, Голышмановским, Исетским, Ишимским, Нижнетавдинским, Сладковским, Сорокинским и Упоровским районами, с уровнем нагрузки от 0,01 до 0,069 т/км2. В третью группу вошли Бердюжский, Вагайский, Омутинский, Юргинский, Ялуторовский районы, где уровень нагрузки был минимальным и составил от 0,006 до 0,008 т/км2.

Таблица 1

Описание кластеров по районам

Номер кластера

Количество районов, входящих в кластер

Перечень районов, составляющих кластер

1

21

Абатский, Армизонский, Аромашевский, Бердюжский, Вагайский, Викуловский, Голышмановский, Заводоуковский, Исетский, Ишимский, Казанский, Нижнетавдинский, Омутинский, Сладковский, Сорокинский, Тобольский, Тюменский, Упоровский, Юргинский, Ялуторовский, Ярковский

2

1

Уватский

 

Таблица 2

Описание кластеров по городам

Номер кластера

Количество городов, входящих в кластер

Перечень городов, составляющих кластер

1

1

Тюмень

2

4

Тобольск, Ишим, Ялуторовск, Заводоуковск

 

mal1a.tif mal1b.tif

а) районы юга Тюменской области б) города

Рис. 1. Дендрограммы процесса кластеризации

Источниками поступления метана в районах, вошедших в первый кластер, являются животноводческие комплексы по содержанию КРС, свиней и птицы. В структуре выбросов этот компонент составляет от 70 до 77 % и варьирует в зависимости от условий содержания сельскохозяйственных животных. Выбросы углекислого газа и окислов азота обусловлены преимущественно деятельностью котельных и мелких, рассредоточенных по территории, производственных процессов.

В структуре выбросов доля парниковых газов по районам варьировала в пределах 15–70 %. Из объектов первого кластера максимальные показатели были характерны для Ишимского, Тюменского, Голышмановского и Ярковского районов. Высокий показатель по Ишимскому району (около 70 %) обусловлен деятельностью крупного свиноводческого комплекса, за счет поступления метана. Наиболее низкие значения доли выбросов парниковых газов в общей структуре выброса характерны для Ялуторовского и Омутинского районов (рис. 2).

Одним из факторов поступления парниковых газов в атмосферу является транспорт. Максимальные эмиссии выбросов от данного типа источника характерны для городской среды. При оценке нагрузки на среду необходимо учитывать все виды транспорта: автомобильный, авиационный и железнодорожный. Анализ городской среды по этому показателю позволил выстроить ранжированный ряд городов по степени снижения выбросов в атмосферу: Тюмень, Тобольск, Ишим, Ялуторовск, Заводоуковск.

Для выявления динамики изменения выбросов по годам была проведена оценка интегрального показателя. Он позволяет определить возможности динамической системы увеличивать или снижать свои параметры на основе рассчитанного тренда. Изучена временная зависимость Y от времени t. На этапе спецификации был выбран линейный тренд. Оценены его параметры методом наименьших квадратов Коэффициент тренда для первого кластера b = –0,75 показывает среднее изменение результативного показателя с изменением периода времени t на единицу его измерения. В данном расчете с увеличением t на единицу y изменится в среднем на –0,75. Для второго кластера b = –1,02, что также говорит о некотором снижении показателя. Интерпретируя полученные результаты, в целом по югу области, за последние годы наблюдается некоторое снижение объемов поступления углекислого газа.

mal2.tif

Рис. 2. Распределение выбросов по районам

Выводы

1. Метод кластерного анализа является универсальным средством для проведения классификации объектов и экологических показателей, их характеризующих, с последующим объединением в кластеры. Таким образом, выделено два кластера по районам и два кластера по городам юга Тюменской области. При зонировании соответственно выделены две зоны: с высокой нагрузкой по парниковым газам – территория, связанная с добычей углеводородного сырья (Уватский район) и вторая, характеризующаяся средним уровнем воздействия, связанная с развитием сельскохозяйственного производства (21 район области).

2. Кластерный анализ данных по городам области позволил ранжировать их по изучаемому показателю в зависимости от очередности объединения кластеров, а анализ источников выброса способствовал выявлению приоритетных объектов или отраслей, для которых вопрос улавливания парниковых газов является первостепенным.

3. При использовании кластерного анализа для районирования территории по отдельной группе показателей (в данной работе по источникам и выбросам парниковых газов) необходимо приводить параметры к единице площади территории или к численности населения, учитывать отраслевую структуру района и уровень эксплуатации природных объектов. Для анализа результатов по полученным кластерам целесообразно применять дополнительные методы анализа. Так, применение линейного тренда описывает в среднем снижение объемов выбросов углекислого газа по 1 и 2 кластерам на 0,75 и на 1,02 единицы измерения соответственно.


Библиографическая ссылка

Малышкин Н.Г., Петров Г.Л., Петрова Е.Ю. ЭКОЛОГО-ЭКОНОМИЧЕСКОЕ РАЙОНИРОВАНИЕ ТЕРРИТОРИИ ТЮМЕНСКОЙ ОБЛАСТИ ПО УРОВНЮ ВЫБРОСОВ ПАРНИКОВЫХ ГАЗОВ // Успехи современного естествознания. – 2019. – № 11. – С. 128-133;
URL: https://natural-sciences.ru/ru/article/view?id=37251 (дата обращения: 20.04.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674