В настоящее время мониторинг сельхозугодий, лесов и степных массивов осуществляется при помощи вертолетов, самолетов, спутников и даже простого обхода полей с измерительными приборами. В то же время «человеческий фактор» и климатические аномалии являются основными причинами пожаров на сельхозугодиях и в лесах. Фактические масштабы пожаров сельхозугодий, степных и лесных массивов, как за рубежом, так и в России до настоящего времени не установлены, так как сплошного мониторинга сельхозугодий, степей и лесов нет из-за ограниченности материальных и людских ресурсов [1–3].
Статистика лесных пожаров на территории СССР (рис. 1, 2) показывает, что ежегодно количество лесных пожаров составляло от 20 до 30 тыc. на площадях от 0,5 до 2,5 млн га, в настоящее время в России (только в лесах Сибири) возникает около 30 тыс. пожаров, которые уничтожают лесные массивы на площадях от 3,5 до 18 млн га [3].
Рис. 1. Количество лесных пожаров на территории СССР в 1947–1996 годах
Рис. 2. Уничтоженные пожарами площади лесных массивов в СССР в 1947–1996 годах
Статистика свидетельствует также, что ежегодно увеличиваются масштабы торфяных пожаров, в связи с чем актуальность проблемы – обеспечение пожарной и экологической безопасности биосферы и ресурсосбережение сельхозугодий, торфяников и лесных массивов, которые являются возобновляемыми природными ресурсами, не вызывает сомнений [1–3].
Материалы и методы исследования
США, Канада, Австралия, Франция и Россия, для которых проблема лесных пожаров актуальна, используют для тушения пожаров лесных массивов специальные авиационные пожарные формирования. В России, в частности, пожарная техника на базе летательных аппаратов используется почти 90 лет [4, 5].
Каждый вид техники обладает своими преимуществами и недостатками. Например, у вертолетов с водосливными устройствами (ВСУ), в отличие от самолетов, скорость транспортировки емкости с водой значительно ниже. Это становится существенным достоинством при тушении пожаров на небольших территориях или в горной местности, так как при сливах на больших скоростях и высотах (более 40–50 м от поверхности), вода, в соответствии с законом Релея, разбивается воздушным потоком до состояния аэрозолей и большая часть ее испаряется, не выполнив задачу по тушению очага пожара [5].
Общим недостатком применяемых в настоящее время методов, устройств и огнетушащих составов является высокая стоимость как авиационной и мобильной техники, так и ее эксплуатации. Поэтому она может использоваться только централизованно и только в крупных регионах России. В то же время тушение пожаров сельхозугодий, степных и лесных массивов водой при помощи авиационной техники не только убыточно, но и неэффективно. Дело в том, что и вертолетам, и самолетам приходится периодически заправляться водой, улетая от места пожара, позволяя огню распространяться за время их заправки и возвращения. Таким образом, возникла идея использовать атмосферный азот в качестве «бесконечного источника огнетушащего состава» для тушения лесных и степных пожаров, загораний сельхозугодий и торфяников [6, 7].
Профилактика самовозгорания торфа и предотвращение пожаров торфяников путем его «азотирования» может стать важным социально-экономическим фактором развития и в нашей стране, и за рубежом, в связи с возобновлением добычи и переработки этого возобновляемого энергоресурса [2, 8, 9]. При этом именно при разработке торфяников и их осушении возникает опасность саморазогрева торфа микроорганизмами до 70 °С. Процессы термодеструкции торфа, возникающие в этом случае, вызывают дальнейшее повышение его температуры, превращающее торф в полукокс, который самовоспламеняется, если в образовавшейся массе есть кислород. Поэтому периодическое насыщение торфяника азотом с помощью газоторфяных стволов является эффективным способом предотвращения пожара на нем. Такими же процессами сопровождается хранение добытого торфа [7, 10].
В 1990-х гг. В.А. Сретенским была доказана бесполезность тушения водой пожаров торфяников [11]. Тем не менее большинство существующих и разрабатываемых методов и средстве тушения торфяных пожаров используют воду, несмотря на то, что заливка водой торфяника делает невозможным его добычу и использование.
Существуют и безводные способы предотвращения распространения огня в лесных и степных массивах, один из которых, например, заключается в создании барьера по контуру наиболее пожароопасных участков до возникновения очагов самовозгорания или во время пожаров. При распространении огня к барьеру специальный минеральный материал разлагается с выделением углекислого газа, который снижает содержание кислорода в воздухе, затрудняя горение. Оксиды магния и кальция начинают взаимодействовать с различными добавками с образованием устойчивого к высоким температурам пористого барьера, который препятствует распространению огня. Недостатками этих способов являются высокие единовременные и эксплуатационные затраты на их осуществление, а также уничтожение торфа и окружающего лесного массива пожарами [2, 8].
Существуют и «газовые способы тушения лесов и торфяников бомбами» с жидким азотом, «брикетами» с гранулами диоксида углерода и др., но они имеют «поверхностную эффективность», а саморазогрев и самовозгорание торфа происходит в глубине торфяника, куда ни «бомбы», ни «брикеты» попасть не могут [12–14].
Авторами был разработан способ «выдавливания» кислорода из торфа атмосферным азотом и установка, реализующая такой метод «азотирования», которые с помощью процессов мембранного или термомагнитного газоразделения выделяют азот из атмосферы, а с помощью газоторфяных стволов-термозондов (ГТСТЗ), определяя путем тепловой локации зоны саморазогрева торфа, вводят в указанные зоны сепарированный азот. Это позволяет предотвратить самовозгорание торфяника и обеспечить безопасную добычу и хранение торфа. Однако мотопомпы, на базе которых было предложено реализовать указанный способ, требуют буксировки, что в условиях бездорожья снижает эффективность их применения [10, 12].
В связи с вышеизложенным была разработана модель автоматизированного мобильного комплекса, в котором были бы устранены недостатки мотопомп, реализующих разработанный метод азотирования торфа, а также расширены его возможности следующим образом [14, 15]:
- применением серийной мобильной азотной станции ТГА 5/10 на шасси высокой проходимости, выпускаемой ООО «Краснодарский компрессорный завод», мощностью в 300 л.с. с производительностью 5 Нм³/мин и давлением в 10 атм, при чистоте азота в 98–99 % с габаритными размерами 6,0×2,5×3,6 м и массой в 11,5 т (рис. 3), что обеспечивает возможность оперативного прибытия, для предотвращения загораний и тушения пожаров торфяников [15];
Рис. 3. Мобильная азотная мембранная станция ТГА – 5/10 ККЗ
Рис. 4. Схема измерений методом ВЭЗ
- применением газо-торфяных стволов термоэлектрозондов (ГТС ТЭЗ) с использованием (рис. 4) метода вертикального электрозондирования (ВЭЗ), что позволяет определять профили торфяного месторождения [16, 17], а также более точно вычислять очаг самонагрева за счет увеличения количества ГТС ТЭЗ при ВЭЗ (не менее четырех) и способа тепловой локации [18].
Таким образом, периодическое азотирование торфяников с помощью мобильной азотной мембранной станции ТГА-5/10 для предотвращения самовозгорания в них, а также для обнаружения и тушения торфяных пожаров позволяет:
- во-первых, решить проблему мониторинга объемов этого возобновляемого ресурса по профилям ВЭЗ;
- во-вторых, обеспечить пожарную безопасность торфяников путем их периодического контроля на предмет наличия зон саморазогрева и при обнаружении таковых подавление их азотированием;
- в-третьих, обеспечить пожарную безопасность разработки торфяного месторождения путем его периодического азотирования;
- в-четвертых, обеспечить хранение добытого торфа с помощью его периодического контроля, на предмет наличия зон саморазогрева и при обнаружении таковых подавление их азотированием.
Результаты исследования и их обсуждение
В проблеме тушения лесных и степных пожаров с помощью авиации перспективным направлением является замена огнетушащего состава (воды) атмосферным азотом, выделяемым с помощью азотной мембранной станции. При этом наиболее подходящими летательными аппаратами для такого способа являются дирижабли и вертолеты (рис. 5) с высокой грузоподъемностью, например МИ-26, а для термомагнитных сепараторов воздуха, батарея которых «превращает» поток воздуха от винта вертолета в поток инертных газов – МИ 8 [19–21].
Рис. 5. Тушение атмосферным азотом лесных пожаров вертолетами и дирижаблями
В последнее время развитие спутниковой и оптической навигации привело к применению в различных областях деятельности человека, в том числе в агропромышленном комплексе, беспилотных летательных аппаратов (БПЛА) [22–24].
Однако малое полетное время БПЛА и малой авиации, а также невысокая грузоподъемность, ограничивают длительность и интенсивность выполнения необходимых агротехнологий точного земледелия [23–25].
Как следует из современных тенденций развития летательных аппаратов, дирижабли являются авиасредствами, которые при достаточно большой автономности обладают высокой грузоподъемностью и весовой отдачей, универсальностью применения и низкой общей стоимостью, включающей и стоимость изготовления – в 10 раз ниже вертолетов, и эксплуатационные затраты – в 100 раз ниже. Следовательно, возникает идея оснастить необходимыми пожарно-техническими средствами дирижабль, который сможет решить все задачи противопожарной защиты сельхозугодий, лесных массивов и торфяников. При оснащении дополнительными средствами дирижабль сможет осуществлять патрулирование значительных территорий и мониторинг возникновения опасных факторов пожара, десантные и спасательные операции в труднодоступных местах, в том числе без парашютирования, т.е. без риска и дополнительных нагрузок для пожарных-спасателей [25].
Второй контейнер, примыкающий к мембранной азотной станции (рис. 5), может быть использован также для техники, удобрений, воды, ядохимикатов и специалистов-аграриев, в том числе для их оперативной доставки на сельхозугодия, требующие применения специальных агротехнологий (полива, опыления и т.д.) [21, 25].
Заключение
Синергетика интеграции предлагаемых способов с помощью дирижаблей, которые защищены патентами РФ, проявится не только в предотвращении пожаров торфяников или в уменьшении затрат на тушение пожаров сельхозугодий, степных, лесных и торфяных пожаров и кардинального сокращения социально-экономических потерь от них, за счет осуществления регулярного наблюдения за степными и лесными массивами в зонах их активной охраны и раннего обнаружения загораний, но и при контроле сельхозугодий, в том числе при выполнении на них агротехнологий точного земледелия, таких как картографирование местности, анализ состояния сельскохозяйственных культур, почвы и других агротехнических параметров, что явится мощным самоорганизующим фактором эффективного взаимодействия региональных подразделений МЧС России с подразделениями Росагропрома и Рослесхоза [25].
Библиографическая ссылка
Белозеров В.В., Ворошилов И.В., Денисов А.Н., Катин О.И., Никулин М.А. СИНЕРГЕТИКА И ИНТЕГРАЦИЯ АГРОТЕХНОЛОГИЙ И ТЕХНОЛОГИЙ ПРОТИВОПОЖАРНОЙ ЗАЩИТЫ СЕЛЬХОЗУГОДИЙ, ЛЕСОВ И ТОРФЯНИКОВ // Успехи современного естествознания. – 2021. – № 10. – С. 13-19;URL: https://natural-sciences.ru/ru/article/view?id=37692 (дата обращения: 10.11.2024).