Рассматриваются крутильные колебания двух стержней, подвешенных на вертикальных нитях в горизонтальной плоскости. При закручивании стержней они поднимаются, но скорость поднятия будет величиной второго порядка малости, поэтому при определении кинетической энергии были введены некоторые упрощения. Задача решена с помощью уравнений Лагранжа. Получены формулы для определения частот главных колебаний [1].
Горизонтальный однородный стержень AB массой «M», подвешен на двух вертикальных нитях длины l, второй стержень CD одинаковой массы «M» подвешен к AB на двух равных нитях длиной l′ (см. рисунок).
Положение стержня AB относительно оси определяется углом θ1, а положение стержня CD относительно AB углом θ2, тогда положение стержня CD относительно оси x определяется суммой θ1 + θ2.
При закручивании стержней оба они поднимаются, но поскольку перемещения центров масс стержней вдоль оси Z несоизмеримо меньше их горизонтальных перемещений, то квадраты скоростей, входящие в формулу кинетической энергии, будут величинами второго порядка малости, поэтому кинетическая энергия системы определяется формулой
(1)
здесь iz - радиус инерции стержня относительно оси z, проходящей через центр масс стержней (см. рисунок).
Расчётная схема
Потенциальная энергия системы будет иметь вид:
П = -Mg(Z1 + Z2) + C; (2)
здесь Z1 и Z2 - координаты центров тяжести стержней, а константа C определяется из начальных условий.
При θ1 = θ2 = θ в положении равновесия: Z1 = l1, Z2 = l + l′, П = 0, тогда из формулы (2)
0 = -Mg(l + l + l′) + C или C = Mg(l + l + l′),
и формула (2) принимает вид:
П = Mg[(l - Z1) +( l + l′ - Z2)].
Обозначая через φ1 и φ2 углы, составляемые нитями подвески стержней с осью Z1, получим
Z1 = cosφ1; Z2 = lcosφ1 + l′ cosφ2.
Разлагая cosj в ряд
1 - cosφ ≈ φ2/2
получи]м формулу потенциальной энергии
Выразим углы φ1 и φ2 через θ1 и θ2, считая малые перемещения концов стержней за дуги окружностей
aθ1 = lφ1; aθ2 = l′φ2;
или
(3)
Уравнение Лагранжа для обобщённых координат q1 = θ1 и q2 = θ2 для формул (1) и (3) будут:
(4)
Полагая
θ1 = Acos(λt + ε) и θ2 = Bcos(λt + ε)
получаем уравнения:
Тогда характеристическое уравнение имеет вид:
или
откуда и найдутся частоты λ1 и λ2 главных колебаний.
Список литературы
1. Розе Н.В. Аналитическая механика. - Л.: 1938 -203 с.