Спектральный анализ линейных операторов имеет целый ряд важных применений в классической механике (особенно теории колебаний), электродинамике, квантовой механике, дифференциальных и интегральных уравнений и других областях математики и математической физики.
Пусть функция f(λ) пределена на спектре квадратной матрицы А,
- минимальный многочлен А.
Тогда спектральное разложение матрицы f(A) имеет вид
(1)
В данной работе рассмотрим построение спектрального разложения матрицы
и его применения к вычислению функций от матриц, решение систем линейных однородных дифференциальных уравнений (ОДУ).
Найдем минимальный многочлен матрицы А - последний инвариантный множитель матрицы (A - λE):
- характеристический многочлен.
Следовательно, НОД миноров 3 порядка:
.
Найдем делители всех миноров 2-го порядка матрицы А:
Т.к. данные миноры 2-го порядка взаимно простые, то d2(λ) = 1.
Следовательно, минимальный многочлен
По формуле (1) для любой функции f(λ), определенной на спектре матрицы А, имеем
Полагая в этом разложении поочередно
f(λ) = 1; f(λ) = (λ ‒ 2); f(l) = (λ ‒ 2)2,
приходим к системе матричных уравнений
из которой находим компоненты Z11, Z12, Z21.
Таким образом, спектральное разложение матрицы А примет вид:
(2)
Спектральное разложение очень удобно, если требуется вычислить несколько функций от одной и той же матрицы.
Например, вычислим значение функции от матрицы sin(πA). При f(λ) = sin(πλ) имеем f(2) = 0, f′(2) = π, f(3) = 0. Следовательно,
Рассмотрим другое применение спектрального анализа - это решение систем ОДУ с постоянными коэффициентами Y′ = AY, где A = (aij)n×n - матрица коэффициентов.
Решение системы , удовлетворяющее начальным условиям
,
находится по формуле
.
Если в качестве yi0 брать произвольные постоянные Ci (i = 1, 2, ..., n), то - общее решение системы.
Найдем общее решение системы ОДУ: Y′ = AY, где А - исходная матрица.
Вычислим eAt с помощью спектрального разложения (2). При f(λ) = eλt имеем f(2) = e2t, f′(2) = te2t, f(3) = e3t. Получаем
Тогда по формуле находим общее решение системы ОДУ