Рассмотрим движение груза M массой m, подвешенной на невесомой нерастяжимой нити бесконечной длины, намотанной на неподвижный цилиндр радиуса r. В положении устойчивого равновесия длина свободной части нити равна l0 (рис. 1), размерами груза пренебрегаем.
Рис. 1. Расчетная схема
В произвольный момент времени положение материальной точки определим радиус-вектором , в качестве обобщенной координаты примем ее угол отклонения от положения устойчивого равновесия j. Кроме силы тяжести на точку действует идеальная связь - нерастяжимая нить (рис. 1), действие которой, заменим ее реакцией - силой натяжения .
Дифференциального уравнения движения
(1)
здесь T - кинетическая энергия, - потенциальная энергия.
(2)
Здесь - скорость материальной точки,
где тогда
(3)
Подставляя выражения (2), (3) в уравнение Лагранжа (1) получим дифференциальное уравнение движения груза
(4)
Начальные условия для уравнения (4) имеют вид
(5)
Движение материальной точки будет описываться дифференциальным уравнением (4) с начальными условиями (5) до тех пор, пока связь, наложенная на данную точку, остается удерживающей, т. е. выполняется условие x2 + y2 + l2 или N ≥ 0. Кроме этого, должно выполняться дополнительное условие
l0 + rφ > 0 или (6)
которое обеспечивает отсутствие соударения груза с поверхностью неподвижного цилиндра.
С учетом (6) уравнение (4) можно записать в виде
(7)
где - приведенный радиус неподвижного цилиндра,
Для нахождения реакции нити запишем основное уравнение динамики несвободной материальной точки в проекциях на нормаль к траектории, которая совпадает с линией AM:
Тогда значение силы N будет равно
(8)
где - приведенная угловая скорость отклонения нити от вертикали, - сила натяжения, отнесенная к весу груза.
Для анализа дифференциального уравнения движения (7) запишем его первый интеграл, выражающий закон сохранения механической энергии
.
С учетом соотношений (2) и (3), получим
Данное выражение можно привести к виду
(9)
где
Выражение для силы натяжения нити (8) с учетом (9) запишется в виде
(10)
где
Анализ задачи показывает, что возможны два вида движения точки, описываемой дифференциальным уравнением (7): колебательное, вблизи положения устойчивого равновесия и движение по раскручивающейся спирали.
Положение устойчивого равновесия определяется из условия минимума потенциальной энергии точки
Согласно выражению (3) получим
Так как B(φ) > 0, а угол β изменяется внутри интервала , то положения устойчивого равновесия соответствует значениям φ равным
φ = 0,2πn; n ∈ N.
График изменения потенциальной энергии материальной точки представлен на рис. 2. При расчетах принято, что l0 = π r, т.е. αкр = π.
Рассмотрим теперь предельные состояния движения груза, при которых осуществляется переход от одного вида движения к другому. Преобразуем выражение (9) к виду:
(11)
где
.
Анализ выражения позволяет сделать вывод о том, что параметр σ характеризует два вида движения точки: колебательное и движение по раскручивающейся спирали.
Рис. 2. Области на фазовой плоскости:
I - колебательного движения;
II - движение по раскручивающейся спирали
При значениях 0 < σ ≥ 1 его можно представить в виде и выражение (11) запишется в виде
откуда следует, что и , т.е. движение носит колебательный характер, максимальное отклонение которого α определится из уравнения:
При значениях σ > 1 величина в любой момент времени и груз совершает движение по раскручивающейся спирали.
Таким образом, предельным, разделяющим два движения груза, является уравнение σ = 1 (рис. 2), которое можно записать в виде:
или
При значениях груз совершает движение по раскручивающейся спирали, а при значениях - колебательное движение. Следовательно, при колебательном движении груза, его максимальное отклонение от положения устойчивого равновесия не может превышать величину
Список литературы
-
Бертяев В.Д. Теоретическая механика на базе Mathcad. Практикум: учебное пособие. - СПб, БХВ - Петербург, 2005. - 752 с.
-
Лойцянский Л.Г., Лурье А.И. Курс теоретической механики. - ч. 1, 2. - М.: Наука, 1983.