Scientific journal
Advances in current natural sciences
ISSN 1681-7494
"Перечень" ВАК
ИФ РИНЦ = 0,775

OXIDATIVE STRESS AND ITS CORRECTION BY CARNOSINE

Yarygina E.G. 1 Prokopeva V.D. 1 Bokhan N.A. 1
1 Mental Health Research Institute
In the review, the issues of correction of the oxidative stress under various diseases by means of antioxidants are considered. The variety of molecular mechanisms, owing to which antioxidant protection of biological molecules could be provided, is noted. Possible side effects of antioxidants during their use in clinical practice are described. Basic properties which should be possessed by an «ideal antioxidant» and evidence confirming presence of such properties in natural dipeptide carnosine (β-Ala-L-His) are introduced. Issues of practical use of carnosine, efficiency of its use in different pathologies as well as in physiological states accompanied by activation of free-radical processes and formation of the oxidative stress are considered. Special attention is paid to correction of the oxidative stress in alcohol-addicted patients and to protection of proteins and lipids against oxidation induced by ethanol and acetaldehyde by carnosine.
oxidative stress
antioxidants
carnosine
1. Aleksandrovskij Ju.A., Pojurovskij M.V., Neznamov G.G. Nevrozy i perekisnoe okislenie lipidov. M.: Nauka, 1991. 144 p.
2. Bagautdinov I.I. Farmakologicheskij opyt primenenija karnozina v Rossii [Jelektronnyj resurs]. Rezhim dostupa: http://www.carnosine.ru/doctor.htm (data obrashhenija 14.04.2015).
3. Boldyrev A.A. Karnozin razgadannaja zagadka prirody. M.: IKAR, 2009. 124 p.
4. Boldyrev A.A., Ragimov A.A., Formazjuk V.E., Stvolinskij S.L., Ponich S.A., Vilgelm V.D., Semenova V.I. «Glaznye kapli dlja lechenija katarakty» // Patent RF no. 2071316/10.01.1997.
5. Bokerija L.A., Boldyrev A.A., Movsesjan R.R. i dr. Kardioprotektornyj jeffekt gistidinsoderzhashhih dipeptidov pri farmakoholodovoj kardioplegii // Bjull. jeksp. biol. med. 2008. T. 145, no. 3. pp. 291–295.
6. Beljaev M.S. Karnozin kak faktor jendojekologicheskoj zashhity organizma ot povrezhdenij, vyzvannyh okislitelnym stressom: Avtoref. dis. kand. biol. nauk. Moskva, 2008. 24 p.
7. Bisheva I.V., Gamaleja N.B., Dmitrieva I.G. i dr. Dinamika pokazatelej oksidantnogo stressa, sistemy antioksidantnoj zashhity, jendogennoj intoksikacii i biohimicheskih markerov porazhenija pecheni u bolnyh alkogolizmom pri lechenii immunomoduljatorom polioksidoniem // Narkologija. 2007. no. 7. pp. 40–45.
8. Bohan N.A., Prokopeva V.D. Molekuljarnye mehanizmy vlijanija jetanola i ego metabolitov na jeritrocity in vitro i in vivo. Tomsk: Izd-vo Toms. un-ta, 2004. 166 p.
9. Vetlugina T.P., Nevidimova T.I., Nikitina V.B. i dr. Patogeneticheskoe obosnovanie tehnologii immunokorrekcii pri psihicheskih rasstrojstvah i boleznjah zavisimosti // Sibirskij vestnik psihiatrii i narkologii. 2013. no. 1 (76). рр. 7–12.
10. Dubinina E.E., Morozova M.G., Leonova N.V. i dr. Okislitelnaja modifikacija belkov plazmy krovi bolnyh psihicheskimi rasstrojstvami (depressija, depersonalizacija) // Voprosy medicinskoj himii. 2000. no. 4. рр. 398–409.
11. Ivanova S.A., Vetlugina T.P., Bohan N.A. i dr. Immunobiologija addiktivnyh rasstrojstv: mehanizmy psihonejroimmunomoduljacii // Sibirskij vestnik psihiatrii i narkologii. 2002. no. 1. рр. 50–57.
12. Kovalev I.E., Kovalev N.E., Seleznev N.G. Reakcija acetilirovanija pri hronicheskom alkogolizme // Zh. nejropatologii i psihiatrii im. S.S. Korsakova. 1984. T. 84, no. 2. рр. 232–234.
13. Konovalova E.V. Zashhitnoe dejstvie karnozina, vkljuchennogo v sostav nanoliposom, v uslovijah okislitelnogo stressa in vitro i in vivo: dis….kand. biol. nauk. M., 2013. 166 р.
14. Malev A.L. Rol okislitelnoj modifikacii belkov v diagnostike jendogennyh i jekzogennyh psihicheskih rasstrojstv: dis….kand. med. nauk. Harkov, 2009. 170 р.
15. Menshhikova E.B., Lankin V.Z., Zenkov N.K. i dr. Okislitelnyj stress. Prooksidanty i antioksidanty. M.: Firma «Slovo», 2006. 556 р.
16. Mingazov A.H., Krivulin E.N., Babin K.A. i dr. Gendernye osobennosti okislitelnoj modifikacii belkov plazmy krovi bolnyh alkogolizmom pozdnego vozrasta // Sibirskij vestnik psihiatrii i narkologii. 2013. no. 3 (78). рр. 9–13.
17. Normark P.R., Jedel Z.S., Leonov I.S. i dr. Opyt primenenija karnozina v chistom vide i v sochetanii s diatermiej pri infekcionnyh i revmaticheskih poliartritah // Vrach. Delo. 1940. no. 11–12. рр. 741–744.
18. Panachev I.V., Vinogradov D.B., Babin K.A. i dr. Osobennosti svobodnoradikalnogo okislenija v jeritrocitah i plazme krovi pri alkogolnom delirii s preobladaniem psihoticheskogo komponenta // Fundamentalnye issledovanija. 2012. no. 4. рр. 352–355.
19. Panchenko L.F., Davydov B.V., Terebilina N.N. i dr. Okislitelnyj stress v patogeneze alkogolnoj bolezni pecheni // Voprosy narkologii. 2013. no. 2. рр. 82–91.
20. Perelman M.I., Kornilova Z.H., Paukov V.S. i dr. Vlijanie karnozina na zazhivlenie rany legkogo // Bjull. jeksp. biol. med. 1989. T. 108, no. 9. рр. 352–355.
21. Prokopeva V.D., Bohan N.A., Patysheva E.V. i dr. Ocenka vyrazhennosti okislitelnogo stressa u bolnyh alkogolizmom i ego korrekcija s pomoshhju sevitina // Sibirskij vestnik psihiatrii i narkologii. 2007. no. 2 (45). рр. 37–40.
22. Rybakova Ju.S. Antiproliferativnoe dejstvie karnozina i ego proizvodnyh na opuholevye kletki nejralnogo proishozhdenija: dis….kand. biol. nauk. M., 2014. 120 р.
23. Severin S.E., Boldyrev A.A., Dupin A.M. Biologicheskaja rol gistidinovyh dipeptidov v vozbudimyh tkanjah // Voprosy medicinskoj himii. 1984. T. 3, no. 3. рр. 32–36.
24. Sevitin. Sekret zdorovja ot prirody [Jelektronnyj resurs]. Rezhim dostupa: http://www.carnosine.ru/antistress.html (data obrashhenija: 10.04.2015).
25. Seleznev D.A. Primenenie preparata karnozin dlja profilaktiki i lechenija vospalitelnyh zabolevanij parodonta pri ortopedicheskom lechenii: dis….kand. med. nauk. M., 2006. 144 р.
26. Smirnova L.P., Krotenko N.V., Krotenko N.M. i dr. Aktivnost antioksidantnyh fermentov v jeritrocitah bolnyh psihicheskimi i nevrologicheskimi rasstrojstvami // Sibirskij vestnik psihiatrii i narkologii. 2008. no. 1. рр. 133–135.
27. Stvolinskij S.L. Zashhita organizma ot okislitelnogo stressa karnozinom: jekologo-biohimicheskij podhod: dis. v vide nauchnogo doklada …d-ra biol. nauk. M., 2006. 86 р.
28. Fedorova T.N., Bagyeva G.H., Stepanova M.S. i dr. Karnozin povyshaet jeffektivnost lekarstvennoj terapii pri bolezni Parkinsona. // Nevrologicheskij vestnik. 2009. T. XLI, vyp. 1. рр. 24–29.
29. Frolov P.F., Gitik A.S., Normark P.R. i dr. Lechenie jazv zheludka i kishechnika s pomoshhju Sa-ionoforeza i diatermii v chistoj forme i v sochetanii s karnozinom // Jeksp. med. 1936. no. 2. рр. 67–68.
30. Cejlikman V.Je., Babin K.A., Vinogradov D.B. i dr. Osobennosti okislitelnogo stressa u bolnyh alkogolnym deliriem, inficirovannyh virusami gepatita S i immunodeficita cheloveka // Kazanskij medicinskij zhurnal. 2013. T. 94, no. 5. рр. 778–781.
31. Shehter A.B., Silaeva S.A., Abojanc R.K. i dr. Metod lechenija ran. Avtorskoe svidetelstvo no. 491184/14. SSSR. 1991.
32. Jarygina E.G., Prokopeva V.D., Arzhanik M.B. i dr. Randomizirovannoe placebo-kontroliruemoe issledovanie jeffektivnosti primenenija sevitina u bolnyh alkogolizmom na jetape formirovanija remissii // Sibirskij medicinskij zhurnal. 2010. T. 25, no. 4. Vyp. 1. рр. 84–88.
33. Baguet A., Bourgois J., Vanhee L. et al. Important role of muscle carnosine in rowing performance // Appl. Physiol. 2010. Vol. 109, no. 4. рр. 1096–101.
34. Babizhaev M.A. Biomarkers and special features of oxidative stress in the anterior segment of the eye linked to lens cataract and the trabecular meshwork injury in primary open-angle glaucoma: challenges of dual combination therapy with N-acetylcarnosine lubricant eye drops and oral formulation of nonhydrolyzed carnosine // Fundam. Clin. Pharmacol. 2012. Vol. 26, 1. рр. 86–117.
35. Chengappa K.N., Turkin S.R., Desanti S. et al. A preliminary, randomized, double-blind, placebo-controlled trial of L-carnosine to improve cognition in schizophrenia // Schizophr. Res. 2012. Vol. 143, no. 1–3. рр. 145–52.
36. Ivanova S.A., Vyalova N.M., Zhernova E.V. et al. Spontaneous and in vitro induced apoptosis of lymphocytes and neutrophils in patients with alcohol dependence // Bull. Exp. Biol. Med. 2010. V.149, no. 2. рр. 246–249.
37. Favero S., Roschel H., Solis M.Y. et al. Beta-alanin (carnosin) supplementation in elderly subjects (60–80 years): effects on muscle carnosine content and physical capacity // Amino Acids. 2012. Vol. 43, no. 1. рр. 49–56.
38. Floyd R.A. Role of oxygen free radicals in carcinogenesis and brain ischemia // FASEB J. 1990. Vol. 4. рр. 2587–2597.
39. Hipkiss A.R., Michaelis J., Syrris P. et al. Non-enzymatic glycosylation of the dipeptide carnosine, a potential anti-protein-cross-linking agent // FEBS Letters. 1995. Vol. 371. рр. 81–85.
40. Hobart L.J., Seibel I., Yeargans G.S. et al. Anti-crosslinking properties of carnosine: Significance of histidine // Life Sciences. 2004. Vol. 75. рр. 1379–1389.
41. Huang M.C., Chen C.N., Peng F.C. et al. Alterations in oxidative stress status during early alcohol withdrawal in alcoholic patients // J. Formos Med. Assos. 2009. Vol. 108, no. 7. рр. 560–9.
42. Nagai K., Suda T., Kawasaki K. et al. Acceleration of metabolism of stress-related substances by L-carnosine // J. Physiol. Soc. Jap. 1990. V. 52. рр. 221–228.
43. Niemela O. Acetaldehyde adducts in circulation // Novartis Found Symp. 2007. Vol. 285. рр. 183–92.
44. Prokopieva V.D., Bohan N.A., Johnson P. et al. Effects of carnosine and related compounds on the stability and morphology of erythrocytes from alcoholics // Alcohol and Alcoholism. 2000. V. 35, no. 1. рр. 44–48.
45. Rona C., Vailati F., Berardesca E. The cosmetic treatment of wrinkles // J. Cosmet. Dermatol. 2004. Vol. 3, no. 1. рр. 26–34.
46. Serra J.A. Parkinson,s disease is associated with oxidative stress: comparison of peripheral antioxidant profiles in living Parkinson,s, Alzheimer,s and vascular dementia patients // J. Neural Transm. 2001. Vol. 108, no. 10. рр. 1135–1148.
47. Seiki M., Ueki S., Tanaka Y. et al. Studies on anti-ulcer effects of a new compound, zinc L-carnosine (Z-103) // Folia Pharmacol. Jap. 1990. Vol. 95. рр. 257–269.
48. Setshedi M. Acetaldehyde adducts in alcoholic liver disease // Oxidative Medicine and Cellular Longevity. 2010. Vol. 3, no. 3. рр. 178–185.
49. Shimanaka S. Treatment of cancer with carnosine // XXXI Intern. Congr. Physiol. Sci., Helsinki, Finland. 1989. рр. 3306.
50. Zima T., Fialova L., Mestec O. et al. Oxidative stress, metabolism of ethanol and alcohol-related diseases // J. Biomed. Sci. 2001. Vol. 8, no. 1. рр. 59–70.

Окислительный стресс. Патогенез большинства заболеваний включает избыточную активацию свободно-радикальных процессов, нарушение функционирования систем антиоксидантной защиты, что неизбежно приводит к формированию в организме окислительного стресса (ОС). Механизмы формирования ОС при разных патологиях довольно универсальны и связаны, в первую очередь, с нарушением гомеостаза и окислительно-восстановительных процессов. Основными мишенями повреждения в организме в условиях ОС являются молекулы белков, липидов и нуклеиновых кислот, которые подвергаются окислительной модификации и в дальнейшем, как правило, не способны выполнять свои функции. В связи с этим поиск и разработка способов коррекции окислительного стресса являются крайне актуальной проблемой современной медицины. Один из способов, который может быть эффективен в клинических условиях, заключается в применении веществ, обладающих широким спектром антиокислительного действия, так называемых антиоксидантов.

Классификация антиоксидантов. До сих пор не существует единой классификации антиоксидантов, что во многом обусловлено их большим разнообразием, различиями химической структуры и молекулярных механизмов, благодаря которым обеспечивается антиоксидантная защита биомолекул. Антиоксиданты могут быть донорами протонов, хелаторами ионов металлов переменной валентности, могут предотвращать развитие цепных окислительных процессов, локально снижать концентрацию кислорода и предотвращать его включение в окисление, переводить перекиси в стабильные продукты окисления, инактивировать свободные радикалы и др. [15]. Чаще всего антиоксидант обладает каким-либо преимущественным механизмом действия в организме, хотя зачастую обеспечивает свой эффект благодаря одновременному влиянию на разные звенья метаболизма по нескольким механизмам.

Условно выделяют две основные группы антиоксидантов: природные и синтетические. Существуют также вещества – синергисты, которые обладают низким антиоксидантным эффектом, но способны усиливать эффект других антиоксидантов (к ним можно отнести, например, лимонную и никотиновую кислоты). Группа природных антиоксидантов самая многочисленная и включает вещества, выделенные из растительных и животных тканей. На растительных компонентах основаны многие биологически активные добавки, обладающие антиоксидантными свойствами. Они составляют существенную часть фармакологического рынка. К природным антиоксидантам относятся также ферменты (супероксиддисмутаза, каталаза, глутатионовая система и др.), неферментные соединения – белки (альбумин, трансферрин, ферритин, лактоферрин, церулоплазмин), низкомолекулярные соединения (витамины Е и С, убихинон, билирубин, мочевая кислота, стероидные гормоны и др.). К группе синтетических антиоксидантов относятся многие лекарственные препараты, тормозящие или блокирующие процессы свободнорадикального окисления, такие, например, как дибунол, эмоксипин, пробукол и др.

По способности растворяться в разных средах различают гидрофильные (аскорбиновая и мочевая кислоты, цистеин, карнозин и др.) и липофильные (токоферолы, ретинол, билирубин и др.) антиоксиданты. Существует деление антиоксидантов по принципу их действия: антиоксиданты прямого действия обладают непосредственными антирадикальными свойствами, которые можно обнаружить в тестах in vitro. У антиоксидантов косвенного действия антиоксидантный эффект является опосредованным и проявляется в результате их влияния на синтез и превращение жизненно-важных биологически активных веществ (ферментов, витаминов, гормонов и др.).

Выбор антиоксидантов для использования в медицине. Накоплен обширный экспериментальный и клинический материал по использованию антиоксидантов. В медицине главным образом их используют в качестве дополнительных средств к базовой терапии. Многие лекарственные препараты кроме основного терапевтического эффекта проявляют и антиоксидантные свойства, как, например, гепатопротекторы (карсил, легалон, гептрал и др.), препараты, используемые при лечении сердечно-сосудистой и неврологической патологии (мексидол, эмоксипин, актовегин, кортексин, реамберин и др.). Однако в зависимости от условий и концентрации антиоксиданты могут проявлять и противоположное антиоксидантному – прооксидантное – действие. Известно, например, что каротины являются полиненасыщенными соединениями, поэтому сами могут окисляться по радикальному механизму и выступать в качестве прооксидантов. В определенных условиях, например, в присутствии ионов металлов переменной валентности, прооксидантный эффект проявляет аскорбат. Витамин Е как антиоксидант наиболее эффективен в комплексе с другими жиро- и водорастворимыми восстановителями (аскорбиновой кислотой, убихиноном, флавоноидами), в отсутствие которых он быстро инактивируется или переходит в токофероксильный радикал, способный инициировать новые цепи окисления ненасыщенных липидов, то есть тоже становится прооксидантом [15].

Выбор конкретного антиоксиданта, точные показания и противопоказания к его применению пока недостаточно разработаны для каждого конкретного заболевания. Нет информации о взаимодействии лекарственных средств природного происхождения с синтетическими препаратами. Кроме того, антиоксиданты могут вызывать аллергические реакции, обладать токсичностью, проявлять низкую эффективность, не всегда поддаются стандартизации, сохраняется также возможность их передозировки и т.д. Поэтому поиск веществ с максимальным антиоксидантным действием и минимальными побочными эффектами в условиях ОС продолжается и остается важной проблемой. В идеале анитоксидант должен проявлять выраженное антиоксидантное действие в широком диапазоне концентраций, быть природным, гидрофильным, обладать хорошей биодоступностью, быть нетоксичным и не образовывать токсичных продуктов при взаимодействии с активными формами кислорода, не оказывать негативных эффектов в случае передозировки, иметь хорошую совместимость с другими препаратами.

Основные свойства карнозина. Многочисленные литературные источники, а также собственный опыт работы, позволяют предполагать, что антиоксидант карнозин – природный дипептид β-аланил-L-гистидин – отвечает практически всем требованиям, предъявляемым к идеальному антиоксиданту. Он синтезируется и содержится в мышечной и нервной ткани человека, легко усваивается и проникает через гематоэнцефалический барьер, обладает высокой биодоступностью и мембраностабилизирующим действием, относится к низкомолекулярным гидрофильным антиоксидантам прямого действия, хотя способен оказывать и опосредованное влияние на систему антирадикальной защиты организма [3]. Об опосредованном действии карнозина свидетельствуют, в частности, результаты экспериментов, проведенных на крысах, которые показали, что карнозин ускоряет метаболизирование кортизола и норадреналина, высвобождающихся в кровь животных при стрессе [42]. Снижение уровня гормонов стресса в крови опосредованно приводит к снижению выраженности ОС. Кроме того, у карнозина не выявлено побочных эффектов, к нему нет привыкания, нет опасности его передозировки, он не накапливается в организме при длительном применении, так как его избыток подвергается расщеплению ферментом карнозиназой на составляющие аминокислоты, которые легко выводятся из организма [3].

Первые положительные биологические эффекты карнозина объясняли его рН-буферными свойствами, однако после выявления его прямого антиоксидантного действия [23], карнозин стали рассматривать не только как буфер для протонов, но и как буфер для металлов с переменной валентностью и активных форм кислорода, то есть как классический антиоксидант. В последующем были выявлены антигликирующие [39], антикросслинкинговые [40] свойства карнозина, которые являются, по сути, отражением его антиоксидантных эффектов.

Клиническое применение карнозина. Создателями первой инъекционной лекарственной формы карнозина были ученые Харьковского физиотерапевтического института. При его введении подкожно по 0,5–1,0 мг (курс состоял из 12–15 инъекций) была получена высокая терапевтическая эффективность при лечении инфекционных и ревматических полиартритов, язвенных заболеваний желудочно-кишечного тракта [17, 29]. Позже было продемонстрировано положительное действие карнозина при заживлении ран роговицы [31] и ткани легкого [20]. Большое место в изучении ранозаживляющего действия карнозина принадлежит японским исследователям. Ими был создан препарат Z-103 на основе комплексного соединения, образуемого карнозином и ионами цинка (L-карнозин-Zn2+), который обладал выраженным противоязвенным эффектом, уменьшал повреждение слизистой желудка, вызванное разными формами стресса и химическими агентами [47]. Японским ученым принадлежит и приоритет использования карнозина при онкологических заболеваниях [49]. Карнозин (3 г/день) в сочетании с радиотерапией при лечении больных раком молочной железы значительно снижал побочные эффекты облучения – радиационное повреждение кожи, интоксикацию организма, повышал иммунитет и увеличивал вероятность излечения в несколько раз. Карнозин оказался эффективным и для предупреждения кахексии, вызываемой химиотерапией при лечении рака (2 г/день в течение 10 дней перед интенсивной химиотерапией) [49]. В экспериментальных исследованиях на культурах опухолевых клеток показано, что карнозин способен полностью подавлять пролиферацию глиобластомы человека, при этом обнаружено снижение уровня активных форм кислорода и повышение активности митохондриальной супероксиддисмутазы в клетках опухоли [22].

Отечественным ученым принадлежит приоритет открытия способности карнозина предотвращать возрастное помутнение хрусталика глаза [4]. Основной причиной помутнения хрусталика при старческой катаракте являются свободнорадикальные реакции, приводящие к окислительной модификации липидов и белков кристаллинов тканей глаза. В ходе развития катаракты в хрусталике происходит значительное снижение эндогенных антиоксидантов глутатиона и карнозина. В клинических исследованиях была доказана эффективность препарата в виде глазных капель для лечения катаракты, содержащего 5 %-й раствор карнозина. Позже при разработке глазных капель был успешно применен природный дипептид, родственный карнозину, N-ацетилкарнозин [34]. Карнозин в виде 5 %-го раствора успешно использовали и для лечения сезонного аллергического риноконьюнктивита, при этом отпадала необходимость дополнительного назначения антигистаминных препаратов [2]. Карнозин нашел свое применение и для лечения воспалительных заболеваний пародонта у пациентов с несъемными ортодонтическими конструкциями: 5 %-й раствор этого дипептида оказывал выраженное иммунокоррегирующее действие и повышал активность ферментов антиоксидантной защиты в слюне [25].

Карнозин успешно применяют в кардиологической практике. В Центре сердечно-сосудистой хирургии им. А.Н. Бакулева используют кардиоплегический раствор, содержащий L-карнозин и N-ацетилкарнозин, при операциях на остановленном сердце, что позволяет в несколько раз увеличить длительность операции без признаков некротического повреждения тканей сердца в операционном поле [5].

В настоящее время в России в качестве источника карнозина часто применяют таблетированную биологически активную добавку под названием севитин. Каждая таблетка севитина содержит 0,15 или 0,25 грамм карнозина. Благодаря работам, проводимым в Московском Научном центре неврологии по изучению биологических свойств карнозина (севитина), было показано, что этот препарат способствует восстановлению мозгового кровообращения и поддержанию функционального состояния сердечно-сосудистой системы, оказывает регулирующее действие на активность иммунной системы [24]. Проводятся исследования, направленные на получение новых карнозин-содержащих препаратов для использования в клинических условиях. Имеются сообщения о создании и испытании нанокомплексов, содержащих карнозин, включенный в состав фосфолипидных наноструктур [13]. Использование таких нанокомплексов позволяет обеспечить устойчивость карнозина к действию карнозиназы при его доставке к месту назначения, что может существенно увеличить эффективность воздействия этого дипептида.

Применениее карнозина при психоневрологических и психических расстройствах. Известно, что ОС развивается при болезни Паркинсона и Альцгеймера [46], при инсульте [38], неврозах [1], шизофрении [26], депрессии [10], при аддиктивных расстройствах, в частности, при алкоголизме [21, 41, 50]. Клетки нервной системы очень чувствительны к свободнорадикальному окислению в силу многих факторов: высокой интенсивности обменных процессов и высокого уровня потребления кислорода, большого количества липидов с полиненасыщенными жирными кислотами, повышенного содержания связанных ионов железа (индукторов окисления) и низкого содержания его белков-переносчиков, образования активных форм кислорода в ходе клеточного метаболизма, которые выполняют в нейрональных клетках функцию вторичных мессенджеров, участия свободных радикалов в нейрорегуляции и др. [3, 15]. Именно это определяет особую необходимость защиты клеток нервной ткани от свободно-радикального окисления с помощью природных антиоксидантов, способных преодолевать гематоэнцефалический барьер, к которым относится и карнозин.

Положительные результаты были получены при добавлении карнозина (2,0 г/сутки) к базовой терапии больных с хронической дисциркуляторной энцефалопатией. Такое лечение приводило к повышению устойчивости липопротеинов плазмы крови к Fe2+-индуцированному окислению, стабилизации эритроцитов по отношению к кислотному гемолизу, интенсификации дыхательного взрыва лейкоцитов и усилению эндогенной антиоксидантной защиты организма, улучшению когнитивных функций головного мозга пациентов [6]. То есть карнозин оказывал антиоксидантный, мембраностабилизирующий и иммуномодулирующий эффекты при данной патологии.

Существенное улучшение клинического состояния пациентов наблюдалось при введении карнозина в дозе 1,5 г/сут в течение 30 дней дополнительно к традиционной терапии при лечении болезни Паркинсона [28]. Использование карнозина позволило снизить токсические эффекты базовой терапии (побочные действия антипаркинсонных препаратов). У больных отмечалось статистически значимое уменьшение неврологической симптоматики (улучшение координации движений). Была выявлена положительная корреляция между активацией антиоксидантного фермента супероксиддисмутазы в эритроцитах и снижением неврологической симптоматики. Добавление карнозина в схему лечения приводило к достоверному снижению гидроперекисей в липопротеинах плазмы крови и значительно увеличивало сопротивляемость липопротеинов низкой и очень низкой плотности к Fe2+-индуцируемому окислению, а также к уменьшению количества окисленных белков в плазме крови. Таким образом, добавление карнозина к базисной терапии значительно улучшало не только клинические показатели, но и повышало антиоксидантный статус организма у пациентов с болезнью Паркинсона.

Успешное применение карнозин нашел и при шизофрении. Рандомизированное двойное слепое плацебо-контролируемое исследование выявило, что включение карнозина (2,0 г/сут) в качестве дополнения к основной терапии при лечении больных шизофренией улучшало когнитивные функции пациентов [35].

Коррекция окислительного стресса карнозином у больных алкоголизмом. Доказано, что у больных алкоголизмом ОС вносит большой вклад в формирование соматических осложнений [19], нарушение иммунного статуса [9, 11], индукцию апоптоза [36]. При алкоголизме важную роль в формирование ОС может вносить этанол, концентрация которого в организме больного существенно превышает норму, а также токсический метаболит этанола – ацетальдегид [8], уровень которого в организме также возрастает при алкогольной интоксикации. Ацетальдегид способен связываться со многими биологическими молекулами (белками плазмы, гемоглобином, факторами свертывающей системы крови, липидами и др.), образуя с ними альдегидные аддукты, которые откладываются и накапливаются в различных тканях (печени, мозге, сердце, мышцах, кишечнике) [43, 48].

Высокие показатели окислительной модификации биомолекул и активности аминотрансфераз сыворотки крови обнаружены у больных алкоголизмом, находящихся в состоянии абстиненции [7]. В другой работе повышенное содержание карбонилированных белков и активности аминотрансфераз сыворотки крови выявлено у пациентов с алкогольным делирием, инфицированных вирусами гепатита С или иммунодефицита человека [30]. Показана взаимосвязь между уровнем окисления (карбонилирования) белков плазмы крови с тяжестью проявлений абстинентного синдрома у пациентов [16]. Есть мнение, что метаболической основой возникновения алкогольного психоза является накопление ацетальдегида, который, взаимодействуя с серотонином, образует токсические продукты, обладающие галлюциногенными свойствами [12]. У больных алкогольным делирием с преобладанием психотического компонента выявлено повышенное содержание окисленных белков в эритроцитах, в плазме крови и низкий уровень ПОЛ [18]. Высокое содержание окисленных белков наблюдалось и у больных с алкогольной энцефалопатией [14]. Таким образом, активация свободно-радикальных процессов, приводящая к накоплению продуктов окислительной модификации биомолекул, вносит существенный вклад в клиническое течение алкоголизма и может определять его особенности, что делает крайне важным изучение эффектов антиоксидантов при данной патологии.

Проведено специальное плацебо-контролируемое исследование эффективности карнозина при коррекции ОС у больных алкогольной зависимостью на этапе формирования ремиссии [21, 32]. Больные после базового лечения принимали карнозин в дозе 1,2 г/сут в течение одного месяца вне стационара. Отмечено, что после лечения в стационаре в организме больных сохранялся ОС на высоком уровне. Через один месяц, в течение которого проводилось исследование, в группе сравнения (у больных, не принимавших никаких препаратов на этапе формирования ремиссии), выраженность ОС осталась на том же уровне, что и в начале исследования. В группе больных, которые принимали карнозин, отмечалось достоверное снижение карбонилированных белков и продуктов ПОЛ в плазме крови до величин, соответствующих здоровым лицам. Прием пациентами карнозина в течение месяца приводил также к повышению активности СОД плазмы и снижению активности аминотрансфераз сыворотки крови. Эти результаты показывают, что прием карнозина эффективно снижает выраженность ОС в организме больных алкоголизмом. При этом нежелательных побочных эффектов не наблюдалось.

Защита карнозином биомолекул от окисления, индуцированного этанолом и ацетальдегидом in vitro. В экспериментальных исследованиях было доказано, что карнозин в концентрации 5 мМ повышает устойчивость эритроцитов больных алкоголизмом к гемолизирующему действию кислоты [44], подавляет окислительную модификацию белков и липидов плазмы крови, вызванную как этанолом, так и ацетальдегидом. Методом электрофореза в полиакриламидном геле выявлено, что инкубация крови с ацетальдегидом приводит к появлению высокомолекулярных белков в плазме, которые не обнаружены ни в контрольных образцах, ни в образцах с этанолом. Это свидетельствует об ацетальдегид-индуцируемом образовании белковых агрегатов, которые образуются в результате свободнорадикального окисления. В образцах крови с ацетальдегидом, в которые был добавлен карнозин, высокомолекулярных белков не выявлялось. То есть карнозин препятствовал ацетальдегид-индуцируемому образованию агрегатов белков плазмы крови. В целом эти исследования показали, что положительный эффект карнозина при лечении больных алкоголизмом может быть обусловлен, в том числе, и способностью этого дипептида защищать белки и липиды от окислительного повреждения, вызванного этанолом и ацетальдегидом.

Применение карнозина при физиологических состояниях, сопровождающихся активацией свободно-радикальных процессов. ОС может развиваться не только при патологических процессах, но и при больших физических нагрузках, а также при физиологическом старении организма. Поэтому уже сегодня карнозин находит широкое применение как общеукрепляющее средство для здоровых людей в условиях физического и психологического напряжения, при действии различных неблагоприятных факторов, в экстремальных условиях. Карнозин применяют для ускорения процессов восстановления утомленных мышц и повышения их работоспособности у спортсменов [33] и у здоровых пожилых людей, стремящихся к активному образу жизни [37]. В экспериментальных условиях было показано геропротекторное действие карнозина. В опытах с использованием специально выведенной линии быстростареющих мышей было доказано, что включение в их рацион карнозина приводит к замедлению процесса старения животных за счет повышения антиоксидантного статуса их организма [27]. Есть сообщения об антистрессорном действии карнозина, а также о возможном его использовании у людей, страдающих нарушениями сна [24]. Перспективны разработки использования карнозина в косметической отрасли, что подтверждают имеющиеся данные о способности карнозина предотвращать структурные изменения коллагена в коже, препятствовать потере ее эластичности [45].

Заключение

Представленные данные об успешном использовании карнозина при разных патологиях и при физиологических состояниях, сопровождающихся активацией свободно-радикального окисления, демонстрируют перспективность использования карнозина в качестве эффективного антиоксиданта, протектора тканей от различных неблагоприятных факторов, индуцирующих развитие окислительного стресса.