Свертывание крови – многоступенчатый ферментный процесс, в котором участвуют белки-протеазы, неферментные белковые акцелераторы процесса и конечный субстратный белок – фибриноген [7, 11]. Важной особенностью гемокоагуляционного каскада является то, что активация и взаимодействие факторов свертывания крови почти на всех этапах процесса происходят на свободных плазменных фосфолипидных мембранах [28]. Такой способностью к фиксации и активации факторов свертывания обладают обращенные к наружной стороне мембраны головки отрицательно заряженных фосфолипидов – фосфатидилсерина, фосфатидилэтаноламина и др. [10, 15, 22]. Ряд видов гиперкоагуляции связан с избытком в плазме крови фосфолипидных мембран, причем удаление последних без каких-либо других воздействий позволяет переводить повышенную свертываемость крови в пониженную [29].
Свертывание крови может функционировать по внутреннему механизму, в котором наблюдается последовательная активация факторов XII, XI, IХ + VIII, Х + V и II и по внешнему (быстрому), который запускается поступлением в кровь извне тканевого фактора (фактор III) [36]. Фактор III и фактор VIIа образуют активный комплекс, под влиянием которого активируются в присутствии ионов кальция и фосфолипидных мембран Х, V и II. Активированный фактор X не только переводит протромбин (фактор II) в тромбин (фактор IIа), но ретроградно активирует комплекс фактор III-фактор VIIа. Оба пути замыкаются на факторе X, вслед за чем они смыкаются и вплоть до образования фибрина сливаются в единый поток. Однако внешний и внутренний механизмы начального этапа свертывания крови не обособлены полностью друг от друга. Они взаимодействуют между собой путем взаимной активации факторов XII и VII, VII и IX. Фактор Ха ретроградно активирует фактор VII в комплексе с фактором III и Са 2+ [12, 13, 25].
Удлинение или укорочение протромбинового времени при нормальных показаниях тромбинового теста (отражающий переход фибриногена в фибрин при добавлении тромбина) может быть обусловлено дефицитом или избытком факторов VII, X, V и II, причем нарушение только в этом тесте при нормальных показаниях всех других коагуляционных проб может быть связано только с колебанием уровня фактора VII [20, 26].
При этом, внутренний механизм начального этапа свертывания крови реализуется цепной (каскадной) реакцией, в которую последовательно включаются факторы XII, XI, IX и VIII. Активация по этому пути инициируется контактом крови (плазмы) с субэндотелием, особенно коллагеном, что ведет к образованию активного «контактного» комплекса, в который входят фактор ХIIа-калликреин-фактор ХIа [31].
Cвертывание по внутреннему механизму оценивается путем определения общего времени свертывания крови (от момента извлечения ее из сосудистого русла до образования сгустка в пробирке), но намного более точно – по активированному частичному (парциальному) тромбопластиновому времени (АЧТВ или АПТВ). В этом тесте усиливаются и стандартизируются контактная (добавлением каолина) и фосфолипидная (добавлением кефалина) активация процесса свертывания. Этой же цели служит так называемый «аутокоагуляционный тест» (АКТ), отражающий кинетику образования и инактивации тромбина в исследуемой плазме при стандартизированной гемолизатом эритроцитов контактной и фосфолипидной активации процесса свертывания [1, 4, 24].
Трансформация протромбина в тромбин реализуется протромбиназным комплексом, в котором активным началом является фактор Xа, а акцелератором процесса – фактор Vа [14]. При этом от протромбина отщепляются фрагменты 1 + 2, после чего одноцепочная молекула протромбина трансформируется вначале в мейзотромбин, а затем в двухцепочный активный фермент – тромбин (фактор IIа). Активация фактора X на фосфолипидной мембране резко ускоряется Ас-глобулином (фактором V), который, как и фактор VIII, активируется по механизму обратной связи первыми небольшими дозами тромбина [19, 30].
Конечная фаза свертывания крови, как известно, характеризуется трансформацией растворенного в плазме фибриногена в волокна фибрина, которые образуют основной каркас сгустка крови [5].
В системе свертывания крови действуют силы не только самоускорения, но и последующего самоторможения, в силу чего факторы свертывания крови и их метаболиты приобретают антикоагулянтные свойства. Так, например, фибрин связывает и инактивирует большие количества тромбина и фактора Ха. Тормозят конечный этап свертывания и продукты расщепления фибриногена плазмином [3, 8].
Значительная часть тромбина, образующегося при активации свертывающей системы крови, связывается с тромбомодулином сосудистой стенки и утрачивает при этом способность вызывать образование фибрина и активировать фактор XIII. Вместе с тем такой заблокированный тромбомодулином тромбин сохраняет способность активировать систему важнейших антикоагулянтов – протеинов С и S, вызывать через них активацию фибринолиза. Поэтому тромбин трансформируется в мощный противотромботический агент [21]. В процессе постоянной слабой активации свертывающей системы крови, носящей в организме перманентный характер, фактически весь образующийся тромбин связывается с тромбомодулином и, не вызывая гемокоагуляции, поддерживает в активном состоянии указанный выше противосвертывающий механизм и жидкое состояние циркулирующей крови [16].
Важнейшую роль в поддержании жидкого состояния крови играет система физиологических антикоагулянтов, в которую входят клеточные и гуморальные компоненты [17]. К клеточным компонентам, обеспечивающим поддержание крови в жидком состоянии в циркуляции, прежде всего, относятся клетки РЭС и гепатоциты, которые специфически удаляют активированные факторы свертывания крови и фибриноген без какого-либо влияния на их предшественники. Гуморальный компонент состоит из физиологических антикоагулянтов, которые тем или иным путем инактивируют (ингибируют) активные факторы свертывания крови. Среди них наиболее значимыми для практики являются антитромбин III, протеины С и S. Антитромбин III инактивирует сериновые протеазы, а именно, тромбин и все предшествующие его образованию активные факторы (за исключением факторов VIIIа и Vа), путем образования с ними неактивных комплексов [27]. Инактивация факторов VIIIа и Vа – сильнейших катализаторов образования тромбина – осуществляется другими белками, так называемой системой протеинов С и S, которая активируется комплексом, образующимся при взаимодействии тромбина с тромбомодулином (специфическим рецептором сосудистой стенки). Активированный этим комплексом плазменный протеин С в присутствии своего кофактора – протеина S – протеолитически расщепляет факторы VIIIа и Vа и таким образом прерывается реакция образования активного фактора X и тромбина [6, 9].
Указанные антикоагулянты синтезируются в печени. Но в отличие от антитромбина III, синтез протеинов С и S зависит от витамина К [134], при дефиците которого могут развиться рецидивирующие тромбозы. Снижение уровня естественных антикоагулянтов, как правило, сопровождает венозные тромбозы и может быть как следствием генетических нарушений (врожденные тромбофилии), так и результатом их потребления, например, во время диссеминированного внутрисосудистого свертывания крови [21].
Ферментная система, вызывающая прогрессирующее асимметричное расщепление фибриногена и фибрина, обозначается как фибринолитическая или плазминовая система. Главным действующим началом этой системы является протеолитический фермент – плазмин, содержащийся в плазме в виде профермента (плазминогена). В циркулирующей крови плазминоген встречается в двух разных формах – в виде интактного глу-плазминогена и в виде частично подвергшегося протеолизу – лиз-плазминогена, который в 10–20 раз быстрее трансформируется в активный плазмин [13].
Основными активаторами внешнего механизма являются тканевой плазминогеновый активатор (ТПА), на долю которого приходится около 70 % общей активаторной активности. Другие активаторы – продуцируемая в юкст-гломерулярном аппарате почек урокиназа и активаторы из других тканей и клеток крови (моноцитов, тромбоцитов и др.).
Внутренняя активация плазминогена частично осуществляется комплексом фактора XIIа с калликреином (так называемый «XIIа-зависимый фибринолиз») и частично – другими механизмами, в том числе антикоагулянтным комплексом «протеины С + S» [1].
Противостоит фибринолизу ингибиторная система, важнейшими компонентами которой являются ингибиторы тканевого активатора плазминогена, обозначаемые как РАI-1 и РАI-2, антиплазмины (в том числе самый мощный из них – α2-антиплазмин) и ингибиторы трансформации плазминогена в плазмин [10]. Более слабым ингибиторным действием обладают α2-макроглобулин, Сl-эстеразный ингибитор, антитрипсин, антитромбин III и др. [18, 23].
При изучении системы гемостаза здоровых плодов путем кордоцентеза в зависимости от гестационного возраста не выявлено достоверно значимых различий среди показателей антикоагулянтной системы и системы фибринолиза при сроке гестации 20–23 недели и 24–28 недель [2]. При этом отмечена тенденция к увеличению уровня относительно низких показателей: протеина С, плазминогена, α2-антиплазмина и ингибитора активатора плазминогена по мере увеличения гестационного возраста, что может считаться физиологической динамикой состояния системы гемостаза здоровых плодов [2, 32].
В то же время в литературе есть данные [35], в которых также проводилось исследование плодовой крови, полученной методом кордоцентеза, о более значимых различиях в уровнях ингибиторов свертывания в зависимости от сроков гестации. Эти авторы утверждают о достаточном физиологическом повышении данных показателей гемостаза при увеличении гестационного возраста.
Однако в любом случае к концу гестационного периода в норме повышаются уровни физиологических антикоагулянтов: антитромбина III и протеина С. К рождению в системе фибринолиза нарастает активность плазиногена и ингибитора активатора плазминогена. Уровень α2-антиплазмина при рождении увеличивается незначительно по отношению к уровню плодов, а концентрация Д-димера в крови новорожденных может в ряде случаев превышать таковую, характерную для взрослых [34].
Есть мнение, что тромбогенную направленность гемостаза при рождении могут обуславливать высокий уровень фактора Виллебранда, повышенные концентрации факторов V и XII, обуславливающие активацию внутреннего пути коагуляции. В то же время в начале фазы новорожденности нередко наблюдается относительно низкое содержание продуктов деградации фибрина/фибриногена [33].
Высокая прокоагулянтная активность может в скорости снижаться во многом за счет понижения содержания печеночных факторов свертывания, вероятно, вследствие их потребления в ходе активного фибринолиза. Есть мнение, что в начале фазы новорожденности есть место повышенному содержанию продуктов деградации фибрина, что дополнительно препятствует развитию тромбоза [33, 35].
Имеются отдельные сведения, что на 3-и сутки жизни у разных биологических объектов отмечается максимальный разброс активности: VII,VIII, IX, XII факторов, антитромбина III, протеина C, α1-антитрипсина с усилением общей гипокоагуляционной тенденции, обеспечивая гемоциркуляцию, являясь биологически целесообразной.
Есть мнение, что к первым 5–7 дням жизни у здоровых новорожденных наблюдается облигатное снижение в плазме уровня витамин-К-зависимых факторов свертывания с развитием физиологической гипокоагуляции, сопряженной с транзиторным дефицитом антитромбина III, протеинов C, S и основных компонентов фибринолиза – плазминогена и его активаторов [2, 7].
Таким образом, имеющиеся сведения о функционировании системы свертывания и систем, ее лимитирующих, на протяжении фазы новорожденности остаются исследованы весьма недостаточно. Не выявлена динамика активности этих систем при развитии дисфункций у новорожденных и не найдены эффективные подходы для их оптимизации.